

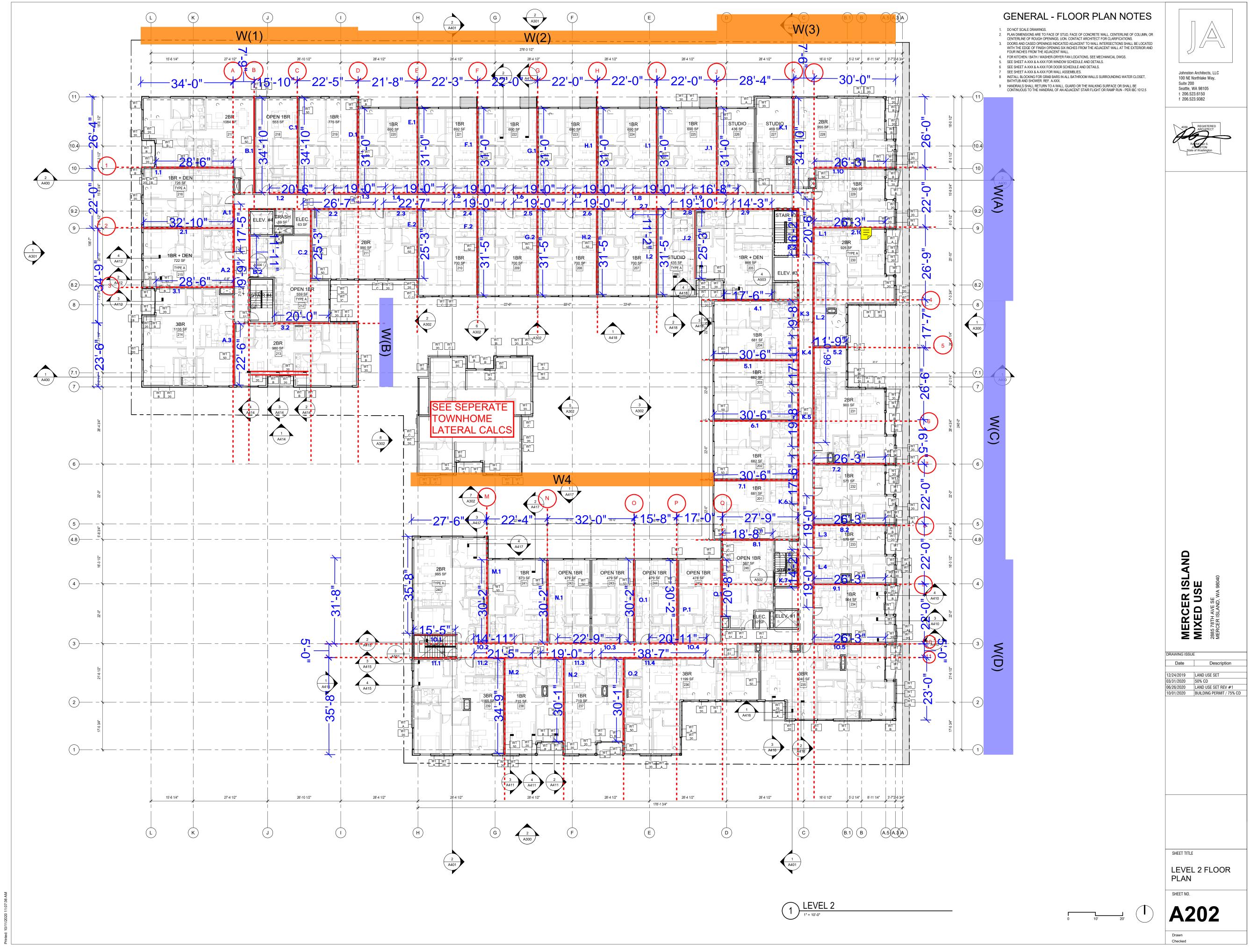
Seattle Tacoma Portland 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746

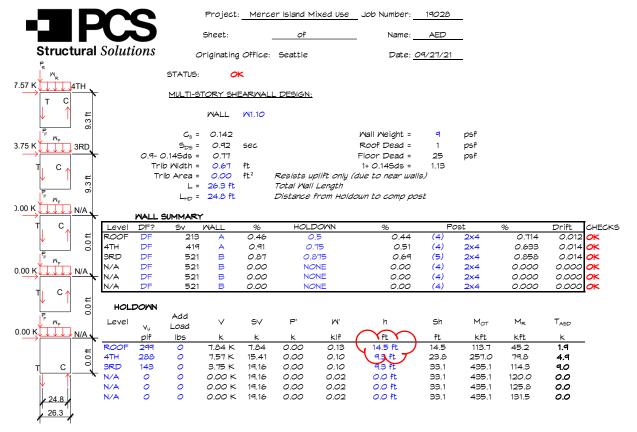
www.pcs-structural.com

SUPPLEMENTAL STRUCTURAL CALCULATIONS

BUILDING PERMIT CORRECTIONS #3

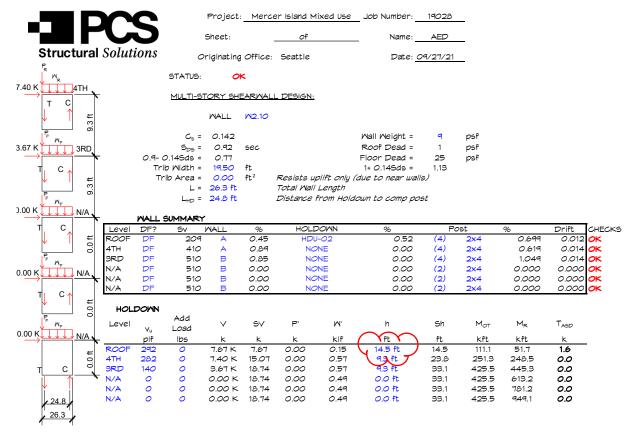
FOR


MERCER ISLAND MIXED USED 2885 78TH AVE SE MERCER ISLAND, MA 98040


PREPARED BY PCS STRUCTURAL SOLUTIONS

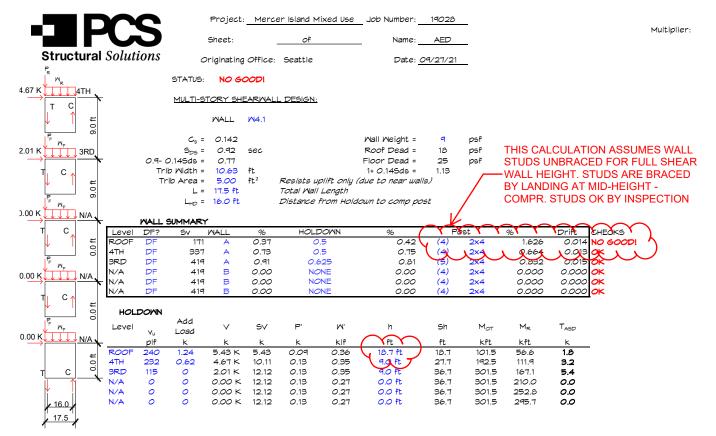
DECEMBER 13, 2022 19-028

SOO1 - GENERAL NOTES



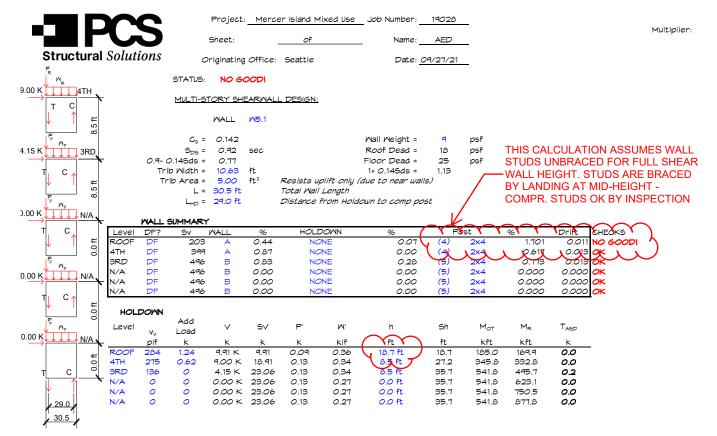
DEFLECTION - PER SDPWS 4.3.2

Level	Yu	Ga	D_s	Achord	E	h		d _{MALL}	SdMALL	d _{HD}	Sh	Sd ₊	D	d _{TOT}	Stretch
	plf	k-in	in	in2	psi	ft		in	in	in	ft	in		in	in
ROOF	299	1 15	0.180	21	1.50E+06	,	13.5	0.276	0.935	0	.105	30.1	0.362	1.298	0.180
4TH	587	1 15	0.180	21	1.50E+06	,	8.3	0.328	0.659	0.	068	16.6	0.128	0.787	0.180
3RD	730	19	0.180	26	1.50E+06	,	8.3	0.331	0.331	0.	068	8.3	0.068	0.398	0.180
N/A	730	19	0.000	21	1.50E+06	,	0.0	0.000	0.000	0.	000	0.0	0.000	0.000	0.000
N/A	730	19	0.000	21	1.50E+06	,	0.0	0.000	0.000	0.	000	0.0	0.000	0.000	0.000
N/A	730	19	0.000	21	1.50E+06	,	0.0	0.000	0.000	0.	000	0.0	0.000	0.000	0.000


Level	D	L	5	E	C _{ASD} h		Cp	Fc	Fcp	Fc'	fc.	/F _{cp}	fc/Fc'	MAX
	k	k	k	k	k ft			psi	psi	psi				
ROOF	0.00	0.00	0.00	4.3	3.093	13.5	0.087	14-	1	625	206	0.236	0.714	0.714
4TH	0.00	0.00	0.00	9.8	6.992	8.3	0.221	333	3	625	526	0.533	0.633	0.633
3RD	0.00	0.00	0.00	16.6	11.841	8.3	0.221	451		625	526	0.722	0.858	0.858
N/A	0.00	0.00	0.00	16.6	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	16.6	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	16.6	0.000	0.0	0.000	C)	625	0			0.000

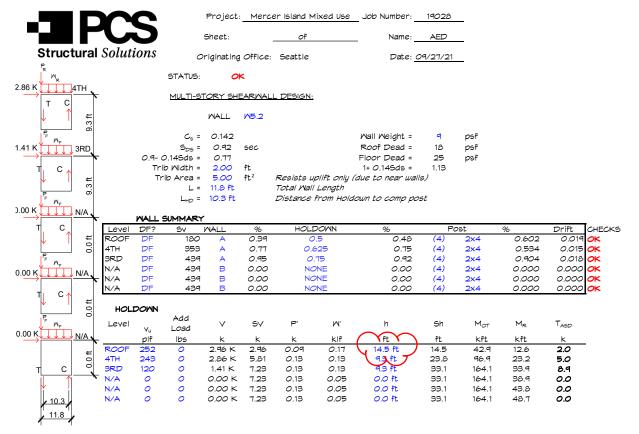
DEFLECTION - PER SDPWS 4.3.2

Level	Yu	Ga	D_{s}	Achord	E	h		d _{MALL}	Sd _{MALL}	d _{HD}	Sh	9	bd _{HD}	d _{TOT}	Stretch
	plf	k-in	in	in2	psi	ft		in	in	in	ft	i	1	in	in
ROOF	292	15	0.180	21	1.50E+06		13.5	0.270	0.916	0.	105	30.1	0.362	1.278	0.180
4TH	574	15	0.180	21	1.50E+06		8.3	0.321	0.645	0.0	068	16.6	0.128	0.773	0.180
3RD	714	- 19	0.180	21	1.50E+06		8.3	0.324	0.324	0.0	068	8.3	0.068	0.392	0.180
N/A	714	- 19	0.000	11	1.50E+06		0.0	0.000	0.000	0.0	000	0.0	0.000	0.000	0.000
N/A	714	- 19	0.000	11	1.50E+06		0.0	0.000	0.000	0.0	000	0.0	0.000	0.000	0.000
N/A	714	- 19	0.000	11	1.50E+06		0.0	0.000	0.000	0.0	000	0.0	0.000	0.000	0.000


Level	D	L	5	Е	CASD	h	Cp	Fc.	Fcp	Fc'	F,	c/F _{cp}	fc/Fc'	MAX
	k	k	k	k	k	ft		psi	psi	psi				
ROOF	0.00	0.00	0.00	4.2	3.024	13.5	5 0.087	144	1	625	206	0.230	0.699	0.699
4TH	0.00	0.00	0.00	9.6	6.838	8.	3 0.221	326	5	625	526	0.521	0.619	0.619
3RD	0.00	0.00	0.00	16.2	11.579	8.	<i>0.</i> 221	55	1	625	526	0.882	1.049	1.049
N/A	0.00	0.00	0.00	16.2	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	16.2	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	16.2	0.000	0.0	0.000	C	>	625	0			0.000

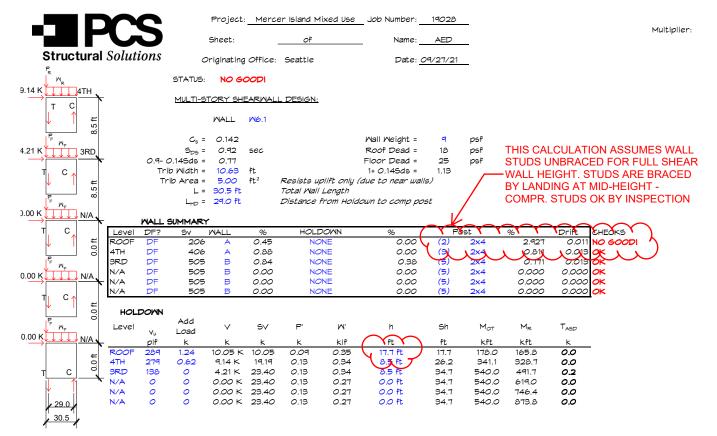
DEFLECTION - PER SDPWS 4.3.2

Level	Yu	Ga	D_s	Achord	E	h		d _{MALL}	SdMALL	d _{HD}	Sh	Sd⊦	D	d _{TOT}	Stretch
	plf	k-in	in	in2	psi	ft		in	in	in	ft	in		in	in
ROOF	240	15	0.180	21	1.50E+06	,	17.7	0.303	0.875	0	.210	33.7	0.698	1.573	0.180
4TH	472	15	0.180	21	1.50E+06	,	8.0	0.255	0.572	0	0.101	16.0	0.191	0.763	0.180
3RD	586	15	0.180	26	1.50E+06	,	8.0	0.316	0.316	0	9.101	8.0	0.101	0.418	0.180
N/A	586	19	0.000	21	1.50E+06	,	0.0	0.000	0.000	0.0	000	0.0	0.000	0.000	0.000
N/A	586	19	0.000	21	1.50E+06	,	0.0	0.000	0.000	0.0	000	0.0	0.000	0.000	0.000
N/A	586	19	0.000	21	1.50E+06	,	0.0	0.000	0.000	0.0	000	0.0	0.000	0.000	0.000


Level	D	L	5	Е	CASD	h		Cp	Fc	Fcp	F	°.'	fc/Fcp		fc/Fc'	MAX
	k	k	k	k	k	ft			psi	psi	P	osi				
ROOF	0.00	0.00	0.00	5.8	4.142	17	1.7	0.051	19	1	625	12	1 <i>0</i> .	316	1.626	1.626
4TH	0.00	0.00	0.00	11.0	7.855	8	0	0.237	374	ŧ	625	563	з О.	599	0.664	0.664
3RD	0.00	0.00	0.00	17.2	12.306	8	0	0.237	469	1	625	563	з 0.:	150	0.832	0.832
N/A	0.00	0.00	0.00	17.2	0.000	0	0.	0.000	C	>	625	C	>			0.000
N/A	0.00	0.00	0.00	17.2	0.000	0	0.	0.000	C	>	625	C	>			0.000
N/A	0.00	0.00	0.00	17.2	0.000	0	.0	0.000	C	>	625	C	2			0.000

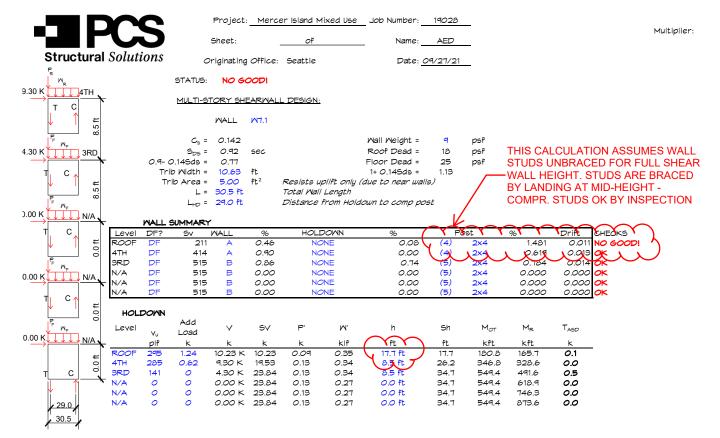
DEFLECTION - PER SDPWS 4.3.2

Level	Yu	Ga	D_s	Achord	E	h		d _{MALL}	Sd _{MALL}	d _{HD}	Sh	5d _H	D	d _{TOT}	Stretch
	plf	k-in	in	in2	psi	ft		in	in	in	ft	in		in	in
ROOF	284	. 15	0.180	21	1.50E+06		17.7	0.349	0.914		0.116	32.7	0.382	1.296	0.180
4TH	559	15	0.180	21	1.50E+06		7.5	0.282	0.565	C	0.053	15.0	0.099	0.665	0.180
3RD	695	19	0.180	26	1.50E+06		7.5	0.284	0.284	C	0.053	7.5	0.053	0.337	0.180
N/A	695	19	0.000	26	1.50E+06		0.0	0.000	0.000	0	.000	0.0	0.000	0.000	0.000
N/A	695	19	0.000	26	1.50E+06		0.0	0.000	0.000	0	.000	0.0	0.000	0.000	0.000
N/A	695	19	0.000	26	1.50E+06		0.0	0.000	0.000	0	.000	0.0	0.000	0.000	0.000


Level	D	L	5	Е	CASD	h	C_p		Fc	Fcp	Fc'		fc/Fcp	fc/Fc'	MAX
	k	k	k	k	k	ft			psi	psi	psi				
ROOF	0.00	0.00	0.00	6.1	4.334	17	.7 0	.051	206	,	625	121	0.330	1.701	1.701
4TH	0.00	0.00	0.00	11.3	8.098	7	50	.267	386	,	625	634	0.617	0.608	0.617
3RD	0.00	0.00	0.00	17.8	12.687	7	5 0	.267	483	3	625	634	0.773	0.762	0.773
N/A	0.00	0.00	0.00	17.8	0.000	0	0 0.	000	C	>	625	C)		0.000
N/A	0.00	0.00	0.00	17.8	0.000	0	0 0.	000	C	>	625	C)		0.000
N/A	0.00	0.00	0.00	17.8	0.000	0	0 0.	000	C)	625	C)		0.000

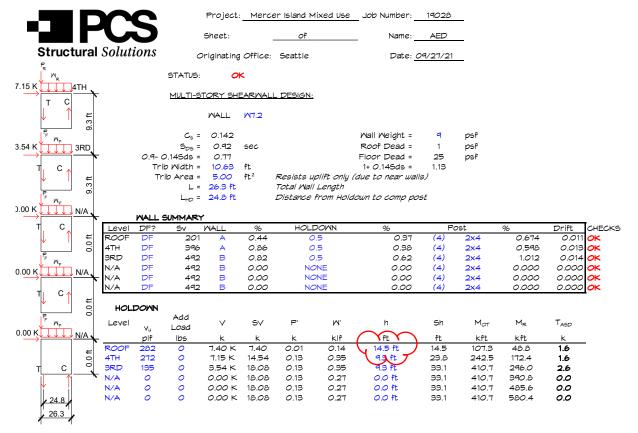
DEFLECTION - PER SDPWS 4.3.2

DEFLE	DEFLECTION - PER SDPWG 4.3.2														
Level	Vu	Ga	D_{s}	A_{chord}	E	h		dNALL	SdMALL	d _{HD}	Sh	Sd	нр	d _{TOT}	Stretch
	plf	k-in	in	in2	psi	ft		in	in	in	ft	in		in	in
ROOF	252	15	0.180	21	1.50E+06	,	13.5	0.242	0.872	0.25	55	30.1	0.875	1.746	0.180
4TH	495	15	0.180	21	1.50E+06	,	8.3	0.281	0.630	0.16	63	16.6	0.309	0.939	0.180
3RD	615	15	0.180	21	1.50E+06	,	8.3	0.349	0.349	0.16	63	8.3	0.163	0.512	0.180
N/A	615	19	0.000	21	1.50E+06	,	0.0	0.000	0.000	0.00	00	0.0	0.000	0.000	0.000
N/A	615	19	0.000	21	1.50E+06	,	0.0	0.000	0.000	0.00	0	0.0	0.000	0.000	0.000
N/A	615	19	0.000	21	1.50E+06	,	0.0	0.000	0.000	0.00	0	0.0	0.000	0.000	0.000


Level	D	L	5	Е	C _{ASD} h		Cp	Fc	Fcp	Fc'	F,	c/F _{cp}	fc/Fc'	MAX
	k	k	k	k	k f	t		psi	psi	psi				
ROOF	0.00	0.00	0.00	3.6	2.606	13.5	0.087	124	ŧ	625	206	0.199	0.602	0.602
4TH	0.00	0.00	0.00	8.2	5.892	8.3	0.221	28	1	625	526	0.449	0.534	0.534
3RD	0.00	0.00	0.00	14.0	9.977	8.3	0.221	475	5	625	526	0.760	0.904	0.904
N/A	0.00	0.00	0.00	14.0	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	14.0	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	14.0	0.000	0.0	0.000	C	>	625	0			0.000

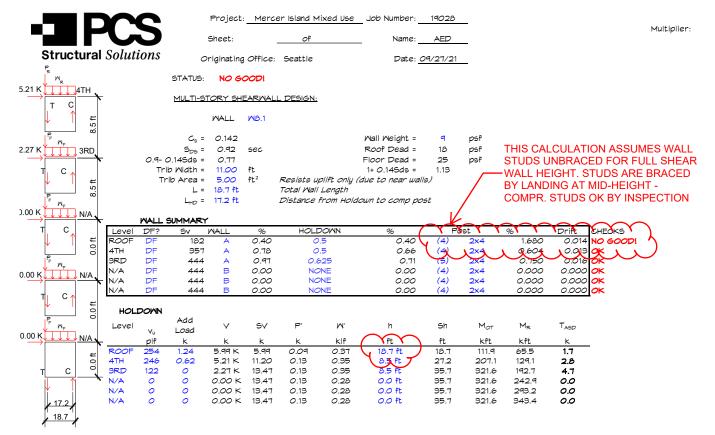
DEFLECTION - PER SDPWS 4.3.2

Level	Yu	Ga	D_s	Achord	E	h		d _{MALL}	Sd _{MALL}	d _{нD}	Sh	Sd	нD	d _{TOT}	Stretch
	plf	k-in	in	in2	psi	ft	i	in	in	in	ft	in		in	in
ROOF	289	15	0.180	11	1.50E+06		16.7	0.345	0.921	0	2.110	31.7	0.364	1.284	0.180
4TH	568	15	0.180	16	1.50E+06		7.5	0.287	0.575	0	.053	15.0	0.099	0.675	0.180
3RD	706	19	0.180	26	1.50E+06		7.5	0.288	0.288	0	.053	7.5	0.053	0.341	0.180
N/A	706	19	0.000	26	1.50E+06		0.0	0.000	0.000	0.	000	0.0	0.000	0.000	0.000
N/A	706	19	0.000	26	1.50E+06		0.0	0.000	0.000	0.	000	0.0	0.000	0.000	0.000
N/A	706	19	0.000	26	1.50E+06		0.0	0.000	0.000	0.	000	0.0	0.000	0.000	0.000


Level	D	L	5	Е	CASD	h	Cp	Fc	Fcp	Fc'	F	c/Fcp	fc/Fc'	MAX
	k	k	k	k	ĸ	ft		psi	psi	psi				
ROOF	0.00	0.00	0.00	5.8	4.168	16.	7 0.057	39	7	625	136	0.635	2.927	2.927
4TH	0.00	0.00	0.00	11.2	7.987	7.	5 0.267	50	7	625	634	0.811	0.799	0.811
3RD	0.00	0.00	0.00	17.7	12.646	7.	5 0.267	482	2	625	634	0.771	0.759	0.771
N/A	0.00	0.00	0.00	17.7	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	17.7	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	17.7	0.000	0.0	0.000	C	>	625	0			0.000

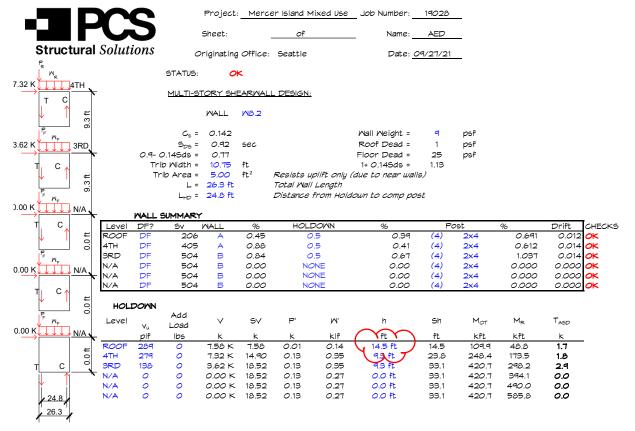
DEFLECTION - PER SDPWS 4.3.2

Level	Yu	Ga	D_s	Achord	E	h	d _{NALL}	SdMALL	d _{HD}	Sh	Sd⊦	D	d _{TOT}	Stretch
	plf	k-in	in	in2	psi	ft	in	in	in	ft	in		in	in
ROOF	295	15	0.180	21	1.50E+06	,	16.7 0.340	0.926	0.1	10	31.7	0.363	1.289	0.180
4TH	580	15	0.180	21	1.50E+06	,	7.5 0.292	0.586	0.0	53	15.0	0.099	0.685	0.180
3RD	721	19	0.180	26	1.50E+06	,	7.5 0.294	0.294	0.0	53	7.5	0.053	0.347	0.180
N/A	721	19	0.000	26	1.50E+06	,	0.0 0.000	0.000	0.00	00	0.0	0.000	0.000	0.000
N/A	721	19	0.000	26	1.50E+06	,	0.0 0.000	0.000	0.0	00	0.0	0.000	0.000	0.000
N/A	721	19	0.000	26	1.50E+06	,	0.0 0.000	0.000	0.00	00	0.0	0.000	0.000	0.000


Level	D	L	5	Е	C _{ASD} ł	ı	Cp	Fc	Fcp	Fc'	f	c/Fcp	fc/Fc'	MAX
	k	k	k	k	k f	t		psi	psi	psi				
ROOF	0.00	0.00	0.00	5.9	4.233	16.7	0.057	202	2	625	136	0.323	1.481	1.481
4TH	0.00	0.00	0.00	11.4	8.122	7.5	0.267	387	1	625	634	0.619	0.610	0.619
3RD	0.00	0.00	0.00	18.0	12.867	7.5	0.267	490)	625	634	0.784	0.773	0.784
N/A	0.00	0.00	0.00	18.0	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	18.0	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	18.0	0.000	0.0	0.000	C)	625	0			0.000

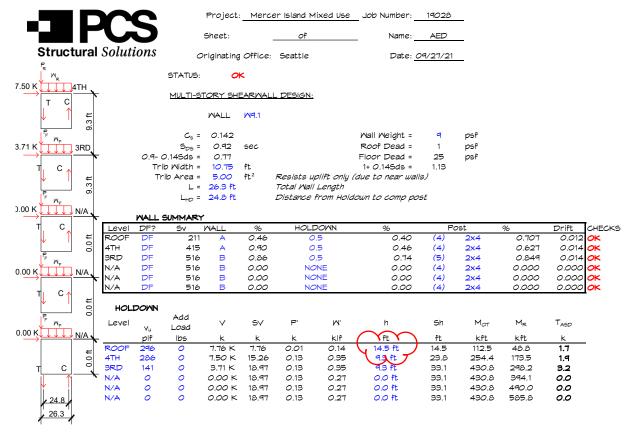
DEFLECTION - PER SDPWS 4.3.2

Level	Yu	Ga	D_s	Achord	E	h		d _{MALL}	Sd _{MALL}	d _{+⊅}	Sh	Sd⊦	D	d _{TOT}	Stretch
	plf	k-in	in	in2	psi	ft		in	in	in	ft	in		in	in
ROOF	282	15	0.180	21	1.50E+06		13.5	0.261	0.884	0	0.105	30.1	0.362	1.246	0.180
4TH	554	15	0.180	21	1.50E+06		8.3	0.310	0.623	0	.068	16.6	0.128	0.751	0.180
3RD	689	1 19	0.180	21	1.50E+06		8.3	0.313	0.313	0	.068	8.3	0.068	0.381	0.180
N/A	689	1 19	0.000	21	1.50E+06		0.0	0.000	0.000	0.	000	0.0	0.000	0.000	0.000
N/A	689	1 19	0.000	21	1.50E+06		0.0	0.000	0.000	0.	000	0.0	0.000	0.000	0.000
N/A	689	1 19	0.000	21	1.50E+06	5	0.0	0.000	0.000	0.	000	0.0	0.000	0.000	0.000


Level	D	L	S	E d	S _{ASD} h		Cp	Fc	Fcp	Fc'	fc.	/F _{cp}	fc/Fc'	MAX
	k	k	k	k k	< ft			psi	psi	psi				
ROOF	0.00	0.00	0.00	4.1	2.918	13.5	0.087	134	1	625	206	0.222	0.674	0.674
4TH	0.00	0.00	0.00	9.2	6.599	8.3	0.221	314	ŧ	625	526	0.503	0.598	0.598
3RD	0.00	0.00	0.00	15.6	11.174	8.3	0.221	532	2	625	526	0.851	1.012	1.012
N/A	0.00	0.00	0.00	15.6	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	15.6	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	15.6	0.000	0.0	0.000	C	>	625	0			0.000

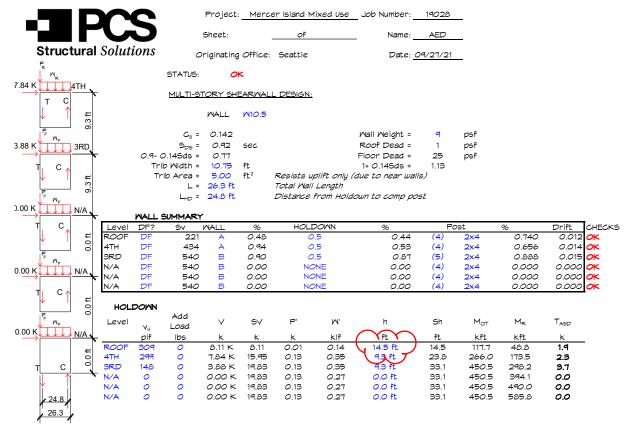
DEFLECTION - PER SDPWS 4.3.2

Level	Yu	Ga	D_{s}	Achord	E	h		d _{MALL}	SdNALL	d _{HD}	Sh	5	d _{HD}	d _{TOT}	Stretch
	plf	k-in	in	in2	psi	ft		in	in	in	ft	in		in	in
ROOF	255	15	0.180	21	1.50E+06		17.7	0.321	0.888		0.196	32.7	0.645	1.533	0.180
4TH	500	15	0.180	21	1.50E+06		7.5	0.253	0.568	0	0.089	15.0	0.168	0.735	0.180
3RD	622	15	0.180	26	1.50E+06		7.5	0.314	0.314	0	0.089	7.5	0.089	0.403	0.180
N/A	622	19	0.000	21	1.50E+06		0.0	0.000	0.000	C	.000	0.0	0.000	0.000	0.000
N/A	622	19	0.000	21	1.50E+06		0.0	0.000	0.000	C	.000	0.0	0.000	0.000	0.000
N/A	622	19	0.000	21	1.50E+06		0.0	0.000	0.000	C	.000	0.0	0.000	0.000	0.000


Level	D	L	S	E	CASD	h	C	p	fc	Fcp	Fc'		f_c/F_{cp}	f _c /F _c '	MAX
	k	k	k	k	k	ft			psi	psi	psi				
ROOF	0.00	0.00	0.00	6.0	4.280) 17	.7 (0.051	204	ł	625	121	0.326	1.680	1.680
4TH	0.00	0.00	0.00	11.1	7.922	2 7	.5 (0.267	37-	1	625	634	0.604	1 0.595	0.604
3RD	0.00	0.00	0.00	17.2	12.304	7	.5 (0.267	469	1	625	634	0.750	0.739	0.750
N/A	0.00	0.00	0.00	17.2	0.000	0.	00	0.000	C	>	625	C)		0.000
N/A	0.00	0.00	0.00	17.2	0.000	0.	00	0.000	C	>	625	C)		0.000
N/A	0.00	0.00	0.00	17.2	0.000	0.	00	0.000	C)	625	C)		0.000

DEFLECTION - PER SDPWS 4.3.2

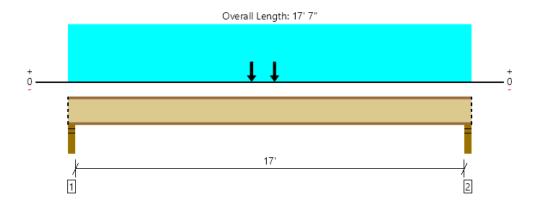
Level	Yu	Ga	D_{s}	Achord	E	h		d _{MALL}	Sd _{MALL}	d _{HD}	Sh	Sd	нр	d _{TOT}	Stretch
	plf	k-in	in	in2	psi	ft		in	in	in	ft	in		in	in
ROOF	289	I 15	0.180	21	1.50E+06	,	13.5	0.267	0.905	0.10	05	30.1	0.362	1.267	0.180
4TH	568	15	0.180	21	1.50E+06	,	8.3	0.317	0.638	0.0	68	16.6	0.128	0.766	0.180
3RD	706	19	0.180	21	1.50E+06	,	8.3	0.321	0.321	0.0	68	8.3	0.068	0.388	0.180
N/A	706	19	0.000	21	1.50E+06	,	0.0	0.000	0.000	0.00	00	0.0	0.000	0.000	0.000
N/A	706	19	0.000	21	1.50E+06	,	0.0	0.000	0.000	0.00	00	0.0	0.000	0.000	0.000
N/A	706	19	0.000	21	1.50E+06	,	0.0	0.000	0.000	0.00	00	0.0	0.000	0.000	0.000


Level	D	L	S	E	CASD 1	1	C_p	fc	Fcp	Fc'	fa	/F _{cp}	fc/Fc'	MAX
	k	k	k	k	k ł	t		psi	psi	psi				
ROOF	0.00	0.00	0.00	4.2	2.990	13.5	5 0.087	142	2	625	206	0.228	0.691	0.691
4TH	0.00	0.00	0.00	9.5	6.759	8.3	3 0.221	322	2	625	526	0.515	0.612	0.612
3RD	0.00	0.00	0.00	16.0	11.446	8.3	3 0.221	545	5	625	526	0.872	1.037	1.037
N/A	0.00	0.00	0.00	16.0	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	16.0	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	16.0	0.000	0.0	0.000	C)	625	0			0.000

DEFLECTION - PER SDPWS 4.3.2

Level	Yu	Ga	D_s	Achord	E	h	dNALL	Sd _{MALL}	d _{нD}	Sh	Sd ₊	D	d _{TOT}	Stretch
	plf	k-in	in	in2	psi	ft	in	in	in	ft	in		in	in
ROOF	296	, 15	0.180	21	1.50E+06	,	13.5 0.27	3 0.926	0.	105	30.1	0.362	1.288	0.180
4TH	581	15	0.180	21	1.50E+06	,	8.3 0.32	5 0.653	0.0	068	16.6	0.128	0.781	0.180
3RD	722	: 19	0.180	26	1.50E+06	,	8.3 0.32	8 0.328	0.0	068	8.3	0.068	0.395	0.180
N/A	722	: 19	0.000	21	1.50E+06	,	0.0 0.00	0 0.000	0.0	000	0.0	0.000	0.000	0.000
N/A	722	: 19	0.000	21	1.50E+06	,	0.0 0.00	0 0.000	0.0	000	0.0	0.000	0.000	0.000
N/A	722	: 19	0.000	21	1.50E+06	,	0.0 0.00	0 0.000	0.0	000	0.0	0.000	0.000	0.000

Level	D	L	S	E	C _{ASD} h		Cp	fc	Fcp	Fc'	fa	/F _{cp}	Fc/Fc'	MAX
	k	k	k	k	k ft			psi	psi	psi				
ROOF	0.00	0.00	0.00	4.3	3.061	13.5	0.087	146	,	625	206	0.233	0.707	0.707
4TH	0.00	0.00	0.00	9.7	6.922	8.3	0.221	330)	625	526	0.527	0.627	0.627
3RD	0.00	0.00	0.00	16.4	11.721	8.3	0.221	44	1	625	526	0.714	0.849	0.849
N/A	0.00	0.00	0.00	16.4	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	16.4	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	16.4	0.000	0.0	0.000	C)	625	0			0.000


DEFLECTION - PER SDPWS 4.3.2

Level	Yu	Ga	D_s	Achord	E	h	d _{MALL}	Sd _{MALL}	d _{HD}	Sh	Sd _H	D	d _{TOT}	Stretch
	plf	k-in	in	in2	psi	ft	in	in	in	ft	in		in	in
ROOF	304	1 15	0.180	21	1.50E+06	,	13.5 0.286	0.968	0.1	05	30.1	0.362	1.331	0.180
4TH	608	3 15	0.180	21	1.50E+06	,	8.3 0.340	0.682	0.0	68	16.6	0.128	0.810	0.180
3RD	756	5 19	1 0.180	26	1.50E+06	,	8.3 0.343	0.343	0.0	68	8.3	0.068	0.410	0.180
N/A	756	5 19	1 0.000	21	1.50E+06	,	0.0 0.000	0.000	0.0	00	0.0	0.000	0.000	0.000
N/A	756	5 19	1 0.000	21	1.50E+06	,	0.0 0.000	0.000	0.0	00	0.0	0.000	0.000	0.000
N/A	756	5 19	1 0.000	21	1.50E+06	,	0.0 0.000	0.000	0.0	00	0.0	0.000	0.000	0.000

Level	D	L	S	E	C _{ASD} h		C_p	fc	Fcp	Fc'	fc	/F _{cp}	fc/Fc'	MAX
	k	k	k	k	k f	t		psi	psi	psi				
ROOF	0.00	0.00	0.00	4.5	3.201	13.5	0.087	152	2	625	206	0.244	0.740	0.740
4TH	0.00	0.00	0.00	10.1	7.239	8.3	0.221	345	5	625	526	0.552	0.656	0.656
3RD	0.00	0.00	0.00	17.2	12.258	8.3	0.221	46	1	625	526	0.747	0.888	0.888
N/A	0.00	0.00	0.00	17.2	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	17.2	0.000	0.0	0.000	C	>	625	0			0.000
N/A	0.00	0.00	0.00	17.2	0.000	0.0	0.000	C	>	625	0			0.000

Level, RF J1 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	714 @ 2 1/2"	1581 (3.50")	Passed (45%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	694 @ 3 1/2"	1794	Passed (39%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	3331 @ 8' 10"	3634	Passed (92%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.319 @ 8' 9 1/2"	0.572	Passed (L/645)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.699 @ 8' 9 1/4"	0.858	Passed (L/295)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.75"	363	352	715	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.75"	357	352	709	Blocking
 Blocking Panels are assumed to carry no load 	s applied dire	tly above the	m and the ful	l load is annlie	d to the men	her heina	designed

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' o/c	
Bottom Edge (Lu)	17' 7" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 17' 7"	16"	23.0	30.0	Default Load
2 - Point (lb)	8'	N/A	90	-	
3 - Point (lb)	9'	N/A	90	-	

Member Notes

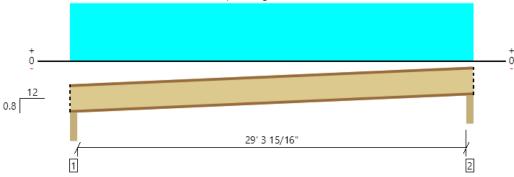
16.75' SPAN

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Alex Davis PCS Structural Solutions (206) 292-5076 adavis@pcs-structural.com	



3/25/2022 12:49:24 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: Gravity Updates Page 2 / 5

Level, RF J2 SLOPED 1 piece(s) 11 7/8" TJI ® 560 @ 16" OC

Sloped Length: 29' 11 3/4"

LDF

1.15

1.15

1.15

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Load: Combination (Pattern)

1.0 D + 1.0 S (All Spans)

1.0 D + 1.0 S (All Spans)

1.0 D + 1.0 S (All Spans)

1.0 D + 1.0 S (All Spans) 1.0 D + 1.0 S (All Spans) Member Length : 30' 9/16"

PASSED

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0.8/12

 Total Load Defl. (in)
 1.831 @ 14' 11 1/2"

 • Deflection criteria: LL (L/240) and TL (L/180).

Design Results

Shear (lbs)

Moment (Ft-lbs)

Live Load Defl. (in)

Member Reaction (lbs)

• Allowed moment does not reflect the adjustment for the beam stability factor.

Actual @ Location

958 @ 2 1/2"

940 @ 3 1/2"

6968 @ 14' 11 1/2"

0.952 @ 14' 11 1/2"

Av	vailable	Required	Dead	Snow	Total	Accessories
3	3.50"	1.75"	460	499	959	Blocking
3	3.50"	1.75"	460	499	959	Blocking
		3.50" 3.50"	3.50" 1.75" 3.50" 1.75"	3.50" 1.75" 460 3.50" 1.75" 460	3.50" 1.75" 460 499 3.50" 1.75" 460 499	3.50" 1.75" 460 499 959

Allowed

1984 (3.50")

2358

10925

1.478

1.971

Result

Passed (48%)

Passed (40%)

Passed (64%)

Passed (L/372)

Passed (L/194)

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 7" o/c	
Bottom Edge (Lu)	30' o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

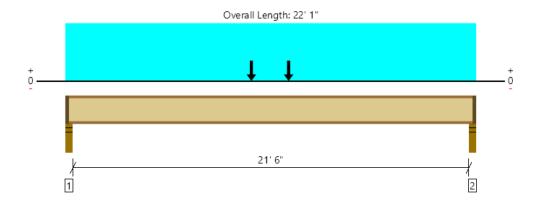
			Dead	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 29' 10 15/16"	16"	23.0	25.0	Default Load

Member Notes	
29.33' SPAN	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Alex Davis	
PCS Structural Solutions	
(206) 292-5076	
adavis@ncs-structural.com	

Level, RF J3 1 piece(s) 11 7/8" TJI ® 560 @ 24" OC

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1245 @ 2 1/2"	1455 (1.75")	Passed (86%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	1230 @ 3 1/2"	2358	Passed (52%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	7105 @ 11' 9/16"	10925	Passed (65%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.522 @ 11' 1/2"	0.722	Passed (L/498)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	1.038 @ 11' 1/2"	1.083	Passed (L/250)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - DF	3.50"	1.75"	1.75"	598	663	1261	1 3/4" Rim Board
2 - Stud wall - DF	3.50"	1.75"	1.75"	598	663	1261	1 3/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 6" o/c	
Bottom Edge (Lu)	21' 10" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 22' 1"	24"	23.0	30.0	Default Load
2 - Point (lb)	10'	N/A	90	-	
3 - Point (lb)	12'	N/A	90	-	

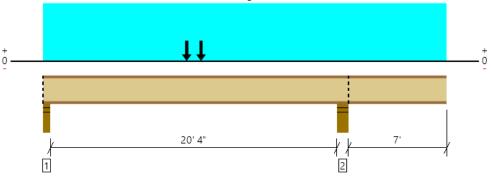
Member Notes

16.75' SPAN

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Alex Davis PCS Structural Solutions (206) 292-5076 adavis@pcs-structural.com	

Level, RF J4 1 piece(s) 11 7/8" TJI ® 560 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1110 @ 2 1/2"	1984 (3.50")	Passed (56%)	1.15	1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	1227 @ 20' 7 1/2"	2358	Passed (52%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	5575 @ 10'	10925	Passed (51%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.378 @ 10' 3 1/2"	0.688	Passed (L/655)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.728 @ 10' 2 11/16"	1.032	Passed (L/340)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Upward deflection on right cantilever exceeds 0.4".

	В	earing Leng					
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.75"	516	594	1110	Blocking
2 - Stud wall - DF	5.50"	5.50"	3.50"	955	1129	2084	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments							
Top Edge (Lu)	7' 5" o/c								
Bottom Edge (Lu)	10' 9" o/c								
TTT is is to such and using Maximum Allowable busing adultion									

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 28' 1"	24"	23.0	30.0	Default Load
2 - Point (Ib)	10'	N/A	90	-	
3 - Point (Ib)	11'	N/A	90	-	

Member Notes

7' cantilever

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Alex Davis
 PCS Structural Solutions

 (206) 292-5076
 adavis@pcs-structural.com

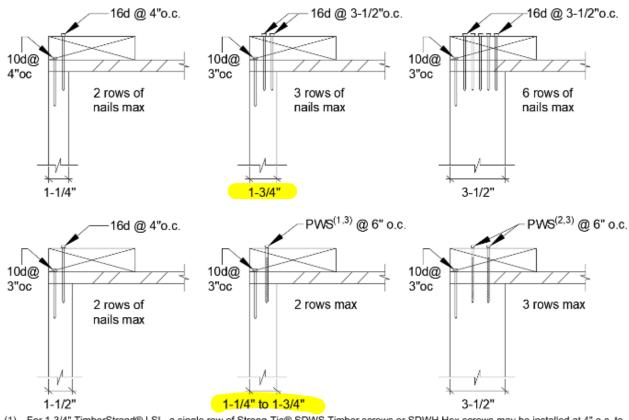
3/25/2022 12:49:24 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: Gravity Updates Page 5 / 5

SOO3 - GENERAL NOTES

Project: ____/MIMM Job No: 19028 Subject: Rim Nailing Sheet_ Name: _____ Originating Office: Seattle Tacoma Portland Date: _ Structural Solutions Check nailing into 1-3/4" SCL Rim? 16d Sole Nailing -> 3.5" Max. Spacing W/1, 25' max penetration |bd||ength = 3.5" # SHT'G (2) POWS OK W/Penetration = 3.5" - 1.5" - 0.75" (2) POWS OK W/1/2" Stagger = 1.25" / OK Per TrusJoist Tech. Bulletin SEE 1/5500 > 6" Max. Spacing SDS Sole Screwso Per TrusJoist Tech. Screw spacing OKV SEE 1/5500 Bulletin Noilling Criteria Includes Allowance For Diaphragm Wails 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 Seattle www.pcs-structural.com Tacoma

Tacoma
 1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797

 Portland
 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746


Project:		Job No:
Subject:	Sheet	Name:
Originating Office: Seattle	Tacoma Portland	Date:

Weyerhaeuser publishes two documents to help an engineer of record to correctly specify TimberStrand[®] LSL to avoid potential splitting and achieve lateral shear transfer.

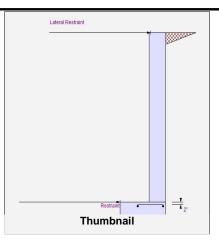
- ICC-ES ESR-1387
- Technical Bulletin TB-206

Section details below summarize the fastener minimum spacings, maximum number of rows and width requirements: (Note: PWS = Proprietary Wood Screws; 1.25" & 1.5" widths are 1.3E grade, while 1.75" & 3.5" are 1.55E grade. Minimum edge distances and spacing between rows per TB-206).

- (1) For 1-3/4" TimberStrand® LSL, a single row of Strong-Tie® SDWS Timber screws or SDWH Hex screws may be installed at 4" o.c. to attach the wall plate to rim board.
- (2) For 3-1/2" TimberStrand® LSL, two rows of Strong-Tie® SDWS Timber screws or SDWH Hex screws may be installed at 4" o.c. to attach the wall plate to rim board.
- (3) For additional information, reference Simpson Strong-Tie® engineering letter, Sole or Top Plate to Rim/Blocking using SDWS and SDWH Screw (L-F-PLTRMBLK21).

Ex	Expires January 2023									Weyerhaeuser, TimberStrand, TJ, and Trus Joist are registered trademarks of Weyerhaeuser NR. © 2020 Weyerhaeuser NR Company. All rights reserved.																	
	Sea Taco Portla	ma	1250 I	Weste Pacific W Mai	Aven	ue, Śu	uite 70	1 Ta	acoma	ile, WA a, WA d, OR	98402	2 25	3.383	2.5076 .2797 .3746									١	www.p	ocs-str	uctural	.com

S200.1 LEVEL P2 FOUNDATION PLAN


RetainPro (c) 1987-2018, Build 11.18.12.04 License : KW-06057733 License To : PCS STRUCTURAL SO

License To : PCS STRUCTURAL SOLUTIONS									
Criteria									
Retained H Wall height Total Wall I	above soil	= = _ =	9.67 ft 0.00 ft 9.67 ft						
Top Suppor	rt Height	=	9.67 ft						
Slope Behir Height of S	nd Wal oil over Toe	=	0.00 0.00 in						

Restrained Retaining Wall

Soil Data Allow Soil Bearing 3,000.0 psf = Equivalent Fluid Pressure Method Active Heel Pressure 55.0 psf/ft = = Passive Pressure = 300.0 psf/ft Soil Density 110.00 pcf = 0.350 Footing||Soil Frictior = Soil height to ignore 12.00 in for passive pressure =

Code: IBC 2015, ACI 318-14, ACI 530-13

Surcharge Loads	Uniform Lateral Load Applied to Ste	Adjacent Footing Load
Surcharge Over Heel = 250.0 psf >>>NOT Used To Resist Sliding & Overturn Surcharge Over Toe = 125.0 psf NOT Used for Sliding & Overturning Axial Load Applied to Stem	Lateral Load = 250.0 # Height to Top = 9.67 ft Height to Bottor = 0.00 ft Load Type = Earth (H)	Footing Width = 0.00 ft
Axial Dead Load = 145.0 lbs Axial Live Load = 225.0 lbs	(Strength) Wind on Exposed Stem = 0.0 p	sf at Back of Wall = 0.0 ft
Axial Load Eccentricity = 0.0 in Earth Pressure Seismic Load	K _h Soil Density Multiplier = 0.020	Poisson's Ratio = 0.300 g Added seismic per unit area = 14.9 psf

Design Summary

Total Bearing Loadresultant ecc.	= =	2,746 lbs 6.32 in
Soil Pressure @ Toe Soil Pressure @ Heel Allowable Soil Pressure Less ACI Factored @ Toe ACI Factored @ Heel	= = Than =	0 psf OK 1,880 psf OK 3,000 psf Allowable 0 psf 2,318 psf
Footing Shear @ Toe Footing Shear @ Heel Allowable	= = =	1.0 psi OK 0.0 psi OK 94.9 psi
Reaction at Top Reaction at Bottom	=	2,740.7 lbs 4,646.6 lbs
Sliding Calcs Lateral Sliding Force	=	4,646.6 lbs

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

Load Factors

Building Code	IBC 2015,ACI
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

Concrete Stem Construction

12.00 in Thickness = Fy = Wall Weight = 150.0 psf f'c = Stem is FREE to rotate at top of footing

60,000 psi 5,000 psi

	@	Top Support	Mmax Between Top & Base	@ Base of Wall
		Stem OK	Stem OK	Stem OK
Design Height Above Ftg	=	9.67 ft	4.54 ft	0.00 ft
Rebar Size	=	# 7	# 7	# 7
Rebar Spacing	=	12.00 in	12.00 in	12.00 in
Rebar Placed at	=	Edge	Edge	Edge
Rebar Depth 'd'	=	9.50 in	10.00 in	9.50 in
Design Data				
fb/FB + fa/Fa	=	0.000	0.468	0.000
MuActual	=	0.0 ft-#	12,186.3 ft-#	0.0 ft-#
Mn * PhiAllowable	=	24,694.2 ft-#	26,044.2 ft-#	24,694.2 ft-#
Shear Force @ this height	=	4,398.6 lbs		5,746.8 lbs
ShearActual	=	38.58 psi		50.41 psi
ShearAllowable	=	106.07 psi		106.07 psi

Other Acceptable Sizes & Spacings:

Toe: # 6 @ 18.00 in Heel:# 6 @ 16.00 in Key: No key defined

-or- Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm

-or- Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm

-or- No key defined

letainPro (c) 1987-2018, Build 11.18.12.04 icense : KW-06057733 .icense To : PCS STRUCTURAL SOLUTIC	Restraine	d Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
Concrete Stem Rebar Area Details			
Top Support	Vertical Reinforcing	Horizontal Reinforcing	
As (based on applied moment) :	0 in2/ft	-	
(4/3) * As :	0 in2/ft	Min Stem T&S Reinf Ar	rea 2.785 in2
3sqrt(f'c)bd/fy : 3sqrt(5000)(12)(9.5)/60000	:0.4031 in2/ft	Min Stem T&S Reinf Ar	rea per ft of stem Height : 0.288 in2/ft
0.0018bh : 0.0018(12)(12) :	0.2592 in2/ft	Horizontal Reinforcing	Options :
		One layer of : Two	layers of :
Required Area :	0.2592 in2/ft	#4@ 8.33 in #4@	2 16.67 in
Provided Area :	0.6 in2/ft		@ 25.83 in
Maximum Area :	2.4225 in2/ft	#6@ 18.33 in #6@	@ 36.67 in
Mmax Between Ends	Vertical Reinforcing	Horizontal Reinforcing	
As (based on applied moment) :	0.2792 in2/ft		
(4/3) * As :	0.3722 in2/ft	Min Stem T&S Reinf Ar	rea 1.476 in2
3sqrt(f'c)bd/fy : 3sqrt(5000)(12)(10)/60000 :	0.4243 in2/ft	Min Stem T&S Reinf Ar	rea per ft of stem Height : 0.288 in2/ft
0.0018bh : 0.0018(12)(12) :	0.2592 in2/ft	Horizontal Reinforcing	Options :
	==========	One layer of : Two	layers of :
Required Area :	0.3722 in2/ft	#4@ 8.33 in #4@	2 16.67 in
Provided Area :	0.6 in2/ft	#5@ 12.92 in #5@	@ 25.83 in
Maximum Area :	2.55 in2/ft	#6@ 18.33 in #6@	@ 36.67 in
Base Support	Vertical Reinforcing	Horizontal Reinforcing	
As (based on applied moment) :	0 in2/ft		
(4/3) * As :	0 in2/ft	Min Stem T&S Reinf Ar	rea 1.309 in2
3sqrt(f'c)bd/fy : 3sqrt(5000)(12)(9.5)/60000	:0.4031 in2/ft	Min Stem T&S Reinf Ar	rea per ft of stem Height : 0.288 in2/ft
0.0018bh : 0.0018(12)(12) :	0.2592 in2/ft	Horizontal Reinforcing	Options :
	==========	One layer of : Two	layers of :
Required Area :	0.2592 in2/ft		⊉ 16.67 in
Provided Area :	0.6 in2/ft	#5@ 12.92 in #5@	@ 25.83 in
Maximum Area :	2.4225 in2/ft	#6@ 18.33 in #6@	@ 36.67 in
Footing Strengths & Dimensions	Footing D	esign Results	1
Toe Width = 2.00	ft		<mark>leel</mark> 2,318 psf

	_	2.00 1
Heel Width	=	1.00
Total Footing Width	=	3.00
Footing Thickness	=	18.00 in
Key Width	=	0.00 in
Key Depth	=	0.00 in
Key Distance from Toe	=	0.00 ft
f'c = 4,000 psi F Footing Concrete Density Min. As % Cover @ Top = 2.00 in		60,000 psi 150.00 pcf 0.0018 Btm.= 3.00 in

		<u>Toe</u>	Hee	l	
Factored Pressure	=	0	2,31	8 psf	
Mu' : Upward	=	937		0 ft-#	
Mu' : Downward	=	940		0 ft-#	
Mu: Design	=	-3		0 ft-#	
Actual 1-Way Shear	=	0.98	0.0	0 psi	
Allow 1-Way Shear	=	94.87	0.0	0 psi	
Min footing T&S reinf Min footing T&S reinf If one layer of horizont	Area p		1.17 0.39 o layers	in2 in2 /ft of horizo	ont

5		
/in footing T&S reinf Area per foo	ot 0.39 in2 /ft	
f one layer of horizontal bars:	If two layers of horizontal bars	:
#4@ 6.17 in	#4@ 12.35 in	
#5@ 9.57 in	#5@ 19.14 in	
#6@ 13.58 in	#6@ 27.16 in	

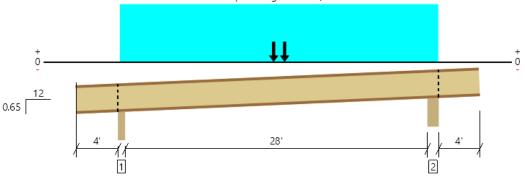
tainPro (c) 1987-2018, Build 11.18 cense : KW-06057733 cense To : PCS STRUCTURA			Restrained Re	etaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-1
Summary of Forces on	Fo	oting : Slab	RESISTS sliding	, stem is PINNED	at footing
Forces acting on footing so	oil pr	essure			
(taking moments about fror	nt of f	ooting to find ec	centricity)		
Surcharge Over Heel	=	lbs	ft	ft-#	
Axial Dead Load on Stem	=	370.0lbs	2.50 ft	925.0ft-#	
Soil Over Toe	=	lbs	ft	ft-#	
Adjacent Footing Load	=	lbs	ft	ft-#	
Surcharge Over Toe	=	lbs	ft	ft-#	
Stem Weight	=	1,450.5lbs	2.50 ft	3,626.3ft-#	
Soil Over Heel	=	lbs	3.00 ft	ft-#	
Footing Weight	=	675.0lbs	1.50 ft	1,012.5ft-#	
Total Vertical Force	=	2,745.5lbs	Moment =	5,563.8ft-#	
Net Mom. at St	em/F	tg Interface =	-1,445.5 ft-#		
Allow. Mom. @ St	em/F	tg Interface =	15,433.9 ft-#		
Allow. Mom. Excee	ds A	pplied Mom.?	Yes		
Therefore Unifor	rm So	oil Pressure =	915.2 psf		

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

	Project: MIMU		Job No:
		Sheet	Name:
Structural Solutions	Originating Office: Seattle	🗌 Tacoma 🔲 Portland	Date: 3/2/22

+⁄- 8.670 ft		+/- 🗸 9.67	70 ft	*-	
1	Concrete Beam	2	Concrete Beam	<u></u>	
Click on +/- to Add, Delet General Beam	e Spans	Loads All Spans Load	Click on Span 1 Combs	o Select	
Select Span :	1 2	Load Type			
+	- D				
Add Load Del	Load Load		<u>m</u> <u>m</u>	- \$	
Load Source :	✓ <u>Auto</u> Traffic Surcharge	o add beam weight	Auto Unbalanced Live Load Plate	acement	
Magnitude :	D Lr		W E	н 0.250 k/ft	
2					
	(Default 1 ft used)				
	1 2, Uniform : H = 0.250 k/ft, Tributar		L S W	ЕН	
Span # 2 Load Type Full Uniform	<u>Trib.</u> (ft) 1.000		L S W k/ft) (k/ft) (k/ft)	E H (k/ft) (k/ft) 0.2	
Calculations	ut-off Dimensions	Show Rebar Length Dimensions	5		
Show Rebar Cu	ut-off Dimensions				
Show Rebar Cu	ut-off Dimensions		3	Per C	ity of Mercer Island,
Show Rebar Cu	ut-off Dimensions			psf tra	tity of Mercer Island, affic surcharge for firs / grade
Show Rebar Cu	ut-off Dimensions			psf tra	affic surcharge for firs
Show Rebar Cu	ut-off Dimensions	T	; → H(0,25) → ↓ ↓ ↓	psf tra	affic surcharge for firs
Show Rebar Cu Display Load Case	ut-off Dimensions	E(02370,0.0) H(1.086,0.0) √		psf tra	affic surcharge for firs
I Show Rebar Cu Display Load Case	ut-off Dimensions	E(02370,0.0) H(1.086,0.0) √		psf tra	affic surcharge for firs
I Show Rebar Cu Display Load Case	ut-off Dimensions	E(02370,0.0) H(1.086,0.0) √		psf tra below	affic surcharge for firs
Show Rebar Cu Display Load Case	tt-off Dimensions □ :: All ↓ 8.670 ft	E(02370,0.0) H(1.086,0.0) √	v H(0.25) ♥ ♥ ♥ ♥ ♥	psf tra below	affic surcharge for firs
Show Rebar Cu Display Load Case	ıt-off Dimensions □ :: All ·	E(02370,0.0) H(1.086,0.0) √	V H(0.25) V V V	psf tra below	affic surcharge for firs
Show Rebar Cu Display Load Case	tt-off Dimensions □ :: All ↓ 8.670 ft	E(02370,0.0) H(1.086,0.0) √	v H(0.25) ♥ ♥ ♥ ♥ ♥	psf tra below	affic surcharge for firs
Show Rebar Cu Display Load Case	tt-off Dimensions □ :: All ↓ 8.670 ft	E(02370,0.0) H(1.086,0.0) √	v H(0.25) ♥ ♥ ♥ ♥ ♥	psf tra below	affic surcharge for firs
Show Rebar Cu Display Load Case	tt-off Dimensions □ :: All ↓ 8.670 ft	E(02370,0.0) H(1.086,0.0) √	v H(0.25) ♥ ♥ ♥ ♥ ♥	psf tra below	affic surcharge for firs
Show Rebar Cu Display Load Case	tt-off Dimensions □ :: All ↓ 8.670 ft	E(02370,0.0) H(1.086,0.0) √	v H(0.25) ♥ ♥ ♥ ♥ ♥	psf tra below	affic surcharge for firs

	Project: MIMU		_ Job No:
	Subject:	Sheet	_ Name:
Structural Solutions	Originating Office: Seattle	Tacoma Portland	Date: 3/2/22


	EME				• • •	•													
ſ	Calculation	s 2D	Diagrar	n 31	D														
	Summary Re	esults N	Aax. Combina	ations	M-V-D Sur	mmary	Support I	Reactions				De	sign Ok	(
			nding Stre		=		Ту	0.59 pical Section	92:1 on										
			Mu- Mn 1	x : Applie * Phi : All					33 k-ft 22 k-ft						-				
	L	oad Comb	oination maximum o ere maximum	n span	20D+L+0.2	0S+E+1.60	H, LL Co	0.0	00 ft						-				
		ection Ra		occurs				Span #	2						_				
		nsient Load Max Dow	d Deflection nward		0.010 i	n		Ratio	= 1	1623 >=30	60								
		Max Upw	ard		2 : H Only 0.000 j			Ratio	=	0 >=30	60								
		al Deflectio Max Dow		Span:	2 : E Only 0.000 i	n		Ratio	= 8	3783 >=1	80				-				
			Span: 2 : +D	+0.750L		.5250E+H,	LL	Ratio		0 >=1									
			Span: 2 : +D	+0.750L	+0.750S+0	.5250E+H,	LL								_				
	Extreme	e Reactio	ons (kips)			_			_										
		oort #1	D 0.55	Lr	L	S	v	v	E 0.91	H 4.22									
		oort #2 oort #3	1.55 0.56						1.25 0.17	7.44 1.79									
		oort #4 oort #5																	
		oort #6 oort #7																	
	Supp	oort #8																	
	Supp	oort #9																	

S201 - LEVEL 1 FRAMING PLAN

Level, Townhome RF J4 2 piece(s) 11 7/8" TJI ® 560 @ 16" OC

Sloped Length: 36' 9 5/8"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs) 1007 @ 4' 1 3/4" 6910 (3.50") Passed (15%) 1.15 1.0 D + 1.0 S (Adj Spans) 1.0 D + 1.0 S (Adj Spans) Shear (lbs) 964 @ 4' 3 1/2" 4715 Passed (20%) 1.15 Moment (Ft-lbs) 7675 @ 18' 3 3/4" 21850 Passed (35%) 1.15 1.0 D + 1.0 S (Alt Spans) Live Load Defl. (in) 0.409 @ 18' 4" 0.947 Passed (L/834) ---1.0 D + 1.0 S (Alt Spans) 1.0 D + 1.0 S (Alt Spans) Total Load Defl. (in) 0.912 @ 18' 4 1/16" 1.421 Passed (L/374) --

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0.65/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Upward deflection on right cantilever exceeds 0.4".

	B	earing Leng	th	Loads t	o Supports	(lbs)	
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Beveled Plate - DF	3.50"	3.50"	3.50"	529	478	1007	Blocking
2 - Beveled Plate - DF	5.50"	5.50"	3.50"	542	489	1031	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 1" o/c	
Bottom Edge (Lu)	14' 7" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	4' to 33'	16"	23.0	25.0	Default Load
2 - Point (Ib)	18'	N/A	90	-	
3 - Point (Ib)	19'	N/A	90	-	

Member Notes

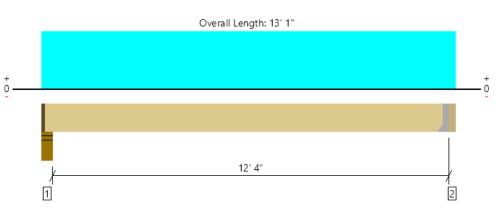
7' cantilever

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Alex Davis PCS Structural Solutions (206) 292-5076 adavis@pcs-structural.com



3/25/2022 7:22:41 PM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: Gravity Updates Page 1 / 1

Member Length : 36' 10 5/16"

Level, B7 - Townhome Roof 1 piece(s) 5 1/8" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4204 @ 12' 9 1/2"	4997 (1.50")	Passed (84%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3529 @ 11' 9 1/2"	12495	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	13095 @ 6' 6 3/4"	28290	Passed (46%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.140 @ 6' 6 3/4"	0.311	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.275 @ 6' 6 3/4"	0.623	Passed (L/543)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 12' 5 1/2''.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - DF	5.50"	3.75"	1.50"	2171	2256	4427	1 3/4" Rim Board
2 - Hanger on 12" DF beam	3.50"	Hanger ¹	1.50"	2155	2242	4397	See note 1

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 8" o/c	
Bottom Edge (Lu)	12' 8" o/c	
-Mavimum allowable brasing inter	isle based on applied lead	

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	HUCQ5.25/9-SDS	3.00"	N/A	12-SDS25212	6-SDS25212	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	1 3/4" to 12' 9 1/2"	N/A	14.9		
1 - Uniform (PSF)	0 to 13' 1" (Front)	13' 9"	23.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Alex Davis PCS Structural Solutions (206) 292-5076 adavis@pcs-structural.com	

3/25/2022 7:26:34 PM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: Gravity Updates Page 1 / 1

Level, Townhome 6x6 Post 1 piece(s) 6 x 6 DF No.1

Post Height: 8' 9"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	19	50	Passed (38%)		
Compression (lbs)	4427	25519	Passed (17%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	4427	18906	Passed (23%)		1.0 D + 1.0 S
Bending/Compression	0.15	1	Passed (15%)	1.15	1.0 D + 1.0 S

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate	Plate Douglas Fi		
Max Unbraced Length	L	Comments		
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2015 Design Methodology : ASD

Drawing is Conceptual

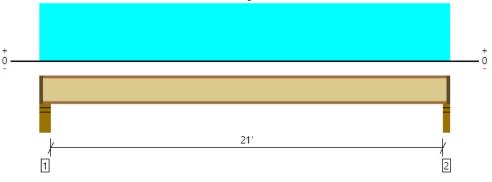
	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	2171	2256	From B7

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Alex Davis
PCS Structural Solutions
(206) 292-5076
adavis@pcs-structural.com


Job Notes

Level, J4 @ Townhome Floor 2 piece(s) 11 7/8" TJI ® 560 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1774 @ 21' 6 1/2"	2530 (1.75")	Passed (70%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	1750 @ 5 1/2"	4100	Passed (43%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	9334 @ 10' 11 1/2"	19000	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.299 @ 10' 11 1/2"	0.529	Passed (L/850)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.623 @ 10' 11 1/2"	1.058	Passed (L/408)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	51	45	Passed		
Moment (Ft-lbs) Live Load Defl. (in) Total Load Defl. (in)	9334 @ 10' 11 1/2" 0.299 @ 10' 11 1/2" 0.623 @ 10' 11 1/2"	19000 0.529 1.058	Passed (49%) Passed (L/850) Passed (L/408)	1.00 	1.0 D + 1.0 L (All Spans) 1.0 D + 1.0 L (All Spans) 1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling, Pour Flooring Overlay.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - DF	5.50"	3.75"	1.75"	950	877	1827	1 3/4" Rim Board
2 - Stud wall - DF	3.50"	1.75"	1.75"	935	863	1798	1 3/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	8' 2" o/c						
Bottom Edge (Lu)	21' 6" o/c						

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead Floor Live		
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 21' 9"	16"	65.0	60.0	Default Load

N	lem	ber	Ν	0	tes	

Worst Case Loading Occurs at Roof Deck

Weyerhaeuser Notes

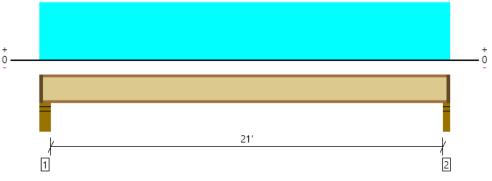
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Alex Davis
 PCS Structural Solutions

 (206) 292-5076
 adavis@pcs-structural.com



3/25/2022 7:17:52 PM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: Gravity Updates Page 1 / 1

Level, J4 @ Townhome Floor 2 piece(s) 11 7/8" TJI ® 560 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	923 @ 21' 6 1/2"	2530 (1.75")	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	910 @ 5 1/2"	4100	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4854 @ 10' 11 1/2"	19000	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.199 @ 10' 11 1/2"	0.529	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.324 @ 10' 11 1/2"	1.058	Passed (L/785)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	51	45	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling, Pour Flooring Overlay.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - DF	5.50"	3.75"	1.75"	365	584	949	1 3/4" Rim Board
2 - Stud wall - DF	3.50"	1.75"	1.75"	360	576	936	1 3/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	11' 6" o/c					
Bottom Edge (Lu)	21' 6" o/c					
TTT iside and and units Maximum Allowable burging adultion						

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 21' 9"	16"	25.0	40.0	Default Load

Member Notes
Typical Floor Joist

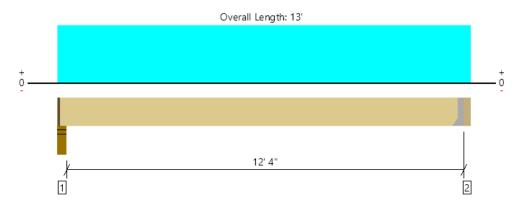
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Alex Davis
 PCS Structural Solutions


 (206) 292-5076
 adavis@pcs-structural.com

3/25/2022 7:20:21 PM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: Gravity Updates Page 1 / 1

Level, Townhome B4 1 piece(s) 3 1/2" x 11 7/8" 2.0E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2713 @ 12' 8 1/2"	3281 (1.50")	Passed (83%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2282 @ 11' 8 5/8"	8035	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	8449 @ 6' 5 3/4"	19902	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.158 @ 6' 5 3/4"	0.311	Passed (L/945)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.265 @ 6' 5 3/4"	0.623	Passed (L/564)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - DF	4.50"	3.25"	1.50"	1136	1685	2821	1 1/4" Rim Board
2 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.50"	1140	1695	2835	See note 1

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	12' 7" o/c			
Bottom Edge (Lu)	12' 7" o/c			
•Maximum allowable bracing intervals based on applied load.				

Connector: Simpson Strong-Tie

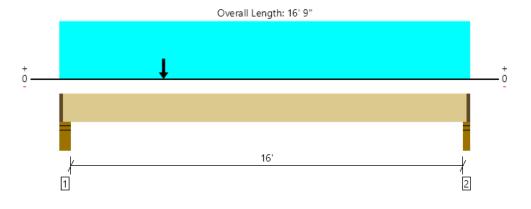
1 5						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	HHUS48	3.00"	N/A	22-10d	8-10d	

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 12' 8 1/2"	N/A	13.0		
1 - Uniform (PSF)	0 to 13' (Front)	6' 6"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Alex Davis PCS Structural Solutions (206) 292-5076 adavis@pcs-structural.com

Level, Townhome B6 1 piece(s) 5 1/4" x 11 7/8" 2.0E Parallam® PSL

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2960 @ 16' 7"	5742 (1.75")	Passed (52%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4111 @ 1' 5 3/8"	12053	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	15613 @ 6' 3/16"	29854	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.307 @ 8' 7/8"	0.406	Passed (L/634)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.528 @ 8' 1"	0.813	Passed (L/370)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (Ibs)			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - DF	5.50"	3.75"	1.50"	1873	2640	4513	1 3/4" Rim Board
2 - Stud wall - DF	3.50"	1.75"	1.50"	1263	1735	2998	1 3/4" Rim Board
Stud wall - DF 3.50 1.75 1.50 1203 1735 2998 13/4 Kim Board							

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	16' 6" o/c	
Bottom Edge (Lu)	16' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

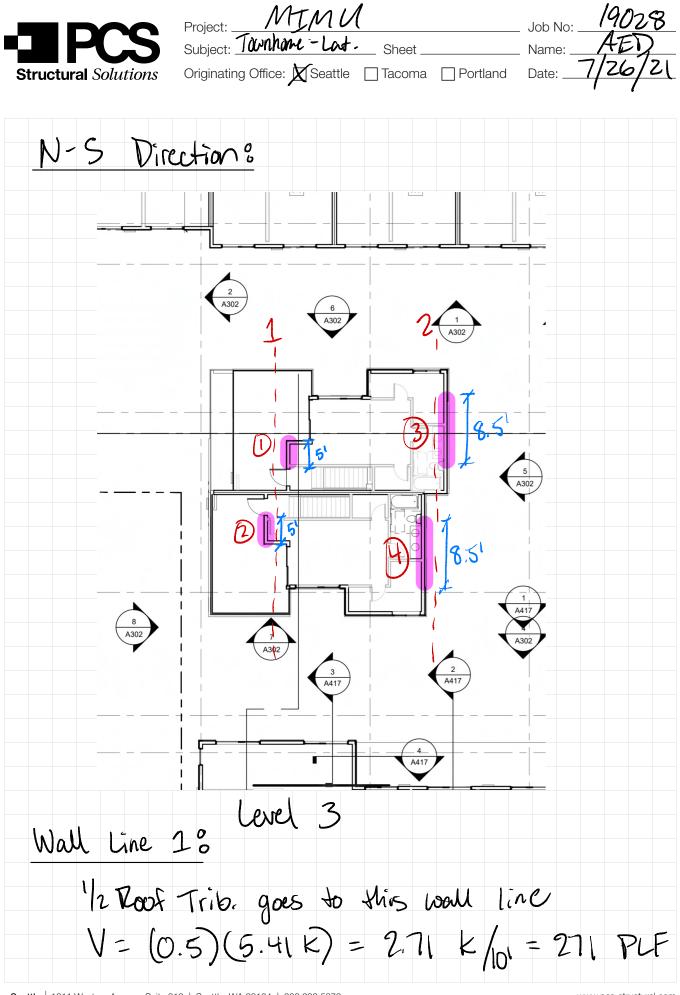
Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	1 3/4" to 16' 7 1/4"	N/A	19.5		
1 - Uniform (PSF)	0 to 16' 9" (Front)	4'	25.0	40.0	Default Load
2 - Point (Ib)	4' 3" (Front)	N/A	1140	1695	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Alex Davis PCS Structural Solutions (206) 292-5076 adavis@pcs-structural.com	


		Project:		Mercer Island		Job Numbe	r: 19-028
-388	PCS		Sheet	:: <u> </u>		Namo	e: AED
Structura	al Solutions	Ori	iginating Office	:: Seattle		Date	e: 03/25/22
STUD MA		SN - TOU	nhome 2	2×4		20	18 NDS/2018 IBC
MALL DATA							
LUMBER TYPE		DF#2	AF	PLIED LOADS:	P _{DEAD} =	1124	LBS
F _b =	900	PSI	N _{WIND} :	= 8.0 PSF	P _{LIVE} =	1152	LBS
F _c =	1350	PSI	M _{SEISMIC} :	= 5.0 PSF	P _{SNOW} =	360	LBS
F _{c⊥} =	625	PSI			P _{MIND} =	0	LBS
E =	1.60E+06	PSI			P _{SEISMIC} =	0	LBS
STUD SIZE:	(2)	2x4	М	SCELLANEOUS:	HEIGHT =	93	3 FT
A _x =]		SPACING =		6 IN
∽ _× - S _× =		-		F	CCENTRICITY =		.1 IN
U _X =					F(COMPRESSION) =		
C _{F(BENDING)} =		(NDS 4.3.6)			F(COMPRESSION) -	APPLY?	
$F(BENDING) = F_{CF} =$				C _{SYS(BENDING)} =	1.50	YES	(SDPWS T3.1.1.1)
С _р =		(NDS 3.10.4)		$C_{r(BENDING)} = C_{r(BENDING)}$		YES	(NDS 4.3.9)
	- IBC 1605.3.			- r(DENVING)			
					0540 . 0 (5)	D . 0751	
CASE 1 CASE 2	DEAD + LIVE + 5 DEAD + SNOW +			CASE 4 CASE 5	DEAD + 0.45MIN DEAD + 0.60MIN		+ 0.155NOW
CASE 3	DEAD + 0.75LIV		+ 5 PSF LAT.		DEAD + 0.75EISI		
				CASE 7	DEAD + 0.535E	5MIC + 0.75LI	VE + 0.755NOW
ALLOWABLE	STRESSES - Ca	1 PER NDS T2	2.3.2, CP PER	NDS 3.7.1, ASS	UME CM, Ct, Ci,	CL = 1.0	
CASE	Cp	F _c *	F _{cE} /F _c *	C_{P}	F _c '	F _b '	F _{c⊥}
1	1.00	1553	0.30	0.280	435	1553	703
2 \$ 3	1.15	1785	0.26	0.247	440	1785	703
4 \$ 5	1.60	2484	0.19	0.181	449	3240	703
6 \$ 7	1.60	2484	0.19	0.181	449	2484	703
APPLIED STR	ESSES - NDS (CHAPTER 3 DI	ESIGN EQUATI	ONS			
CASE		f _c	M _{LAT, LOAD}	M _{ECC.}	M _{TOTAL}	₽ _₽	
1	2276	217	73	19	84	165	
2	1484	141	73	12	80	157	
З	2258	215	73	19	84	165	
4	2258	215	52	19	64	125	
5	1124	107	70	9	75	148	
6 7	1124 2258	107 215	51 38	9 19	57 50	111 98	
	2258 CKS - COMBINE				50	-1 <i>0</i>	
					E /=	Dofloction	
CASE 1	f _c /F _c ' 0.50	f _b ∕F _b ' Ο.11	f _c ∕F _{c⊥} 0.31	Combined 0.45	f _c /F _{cE} 0.46	Deflection 0.08	L/? L/1452
2	0.32	0.09	0.20	0.23	0.30	0.00	L/1527
3	0.49	0.09	0.31	0.41	0.46	0.08	L/1454
4*	0.48	0.04	0.31	0.30	0.46	0.03	L/4104
5*	0.24	0.05	0.15	0.12	0.23	0.03	L/3478
6	0.24	0.04	0.15	0.11	0.23	0.05	L/2164
7	0.48	0.04	0.31	0.30	0.46	0.05	L/2441
MAX>	0.50	0.11	0.31	0.45	0.46	0.08	L/1452
* Deflections re	O.K. educed bu 0.42 r	O.K. Der IBC Table 11	<mark>0.K.</mark> 604.3 footnote	O.K. f. Increase defl	O.K. ection by 1.4 for	iambs suppor	rtina alass.
	ING - *ALIGN S						
MISCELLANEO			ALLOWABLE	STRESSES	Г		REACTIONS
C _{fu} =		(NDS 4.3.7)	F_{v}		PSI		OF - PLANE)
O _{fu} - F _∨ =			F _b ':		=		O LB
·			U U		L		
	TE PROPERTIE		APPLIED STR			\sim	
A _× =		-	f _v :		PSI	(O.K. X	
S _× =			f _b :		L L	(N.G.	OK - NO PL BEN
I _× =	1.97	IN ⁻⁺	Δ_{MAX} :	= 0.040	IN		WHEN STUDS S

		Project:		Mercer Island		Job Number:	19-028
	<u>2</u> X		Sheet:	1 <i>o</i> f		Name:	AED
Structura	Solutions	Ori	ginating Office:	Seattle		Date:	03/25/22
STUD MA	LL DESIG	5N - TOW	nhome 2	×6		2018	ND5/2018 IBC
MALL DATA							
LUMBER TYPE:		DF#2 ▼		PLIED LOADS:	P _{DEAD} =	1124	LBS
F _b =				8.0 PSF	P _{LIVE} =	1152 360	LBS
F _c =	1350 I 625 I		MSEISMIC =	5.0 PSF	P _{SNOM} =		LBS LBS
F _{c1} = E =					P _{WIND} =	0	LBS
L -	1.60E+06	- 51			P _{SEISMIC} =	0	LDJ
STUD SIZE:	(1) :	2x6	MIS	CELLANEOUS:	HEIGHT =	9.33	FT
A =	8.25				SPACING =	16	
5 _x =	7.56			FC	CENTRICITY =	0.1	
U _x =	20.80						(NDS 4.3.6)
~		NDS 4.3.6)		C	F(COMPRESSION) =	APPLY?	(1903 4.3.0)
C _{F(BENDING)} = F _{cF} =	1158.4 1			$C_{SYS(BENDING)}$ =	1.35	YES	(SDPWS T3.1.1.1)
$\Gamma_{cE} = C_{b} =$	1.25 (1.55		(SDFWS 13.1.1.1) (NDS 4.3.9)
				$C_{r(BENDING)}$ =	1.19	TE5	(NDS 4.3.9)
LUAD CASES	- IBC 1605.3.1						
CASE 2	DEAD + LIVE + 5 DEAD + SNOW + DEAD + 0.75LIV	5 PSF LAT.		CASE 5	DEAD + 0.45MIN DEAD + 0.60MIN DEAD + 0.75EISM	D	0.755NOW
					DEAD + 0.535EIS		E + 0.755NOW
ALLOWABLE S	TRESSES - CO	PER NDS T2	.3.2, CP PER N	IDS 3.7.1, ASSU	ME CM, Ct, Ci,	CL = 1.0	
CASE	c_{p}	F _c *	F _{cE} /F _c *	C_{P}	F _c '	F _b '	Fcl
1	1.00	1485	0.78	0.600	891	1346	781
2 \$ 3	1.15	1708	0.68	0.547	933	1547	781
4 \$ 5	1.60	2376	0.49	0.425	1009	2527	781
6 \$ 7	1.60	2376	0.49	0.425	1009	2153	781
	ESSES - NDS C	HAPTER 3 DE	SIGN EQUATIO	NS			
CASE	PAPPLIED	fc	M	M _{ECC.}	M _{TOTAL}	fp	
1	2276	276	M _{LAT. LOAD} 73	19 19	84	134	
2	1484	180	73	12	80	127	
3	2258	274	73	19	84	134	
4	2258	274	52	19	64	102	
5	1124	136	70	٩	75	120	
6	1124	136	51	9	57	90	
7	2258	274	38	19	50	80	
DESIGN CHECK	KS - COMBINE	D STRESS CH	ECK PER NDS	EQN 3.9-3			
CASE	F _c /F _c '	₽ _b ∕₽ _b '	$f_c/F_{c\perp}$	Combined	f_c/F_{cE}	Deflection	L/?
1	0.31	0.10	0.35	0.23	0.24	0.04	L/2817
2	0.19	0.08	0.23	0.13	0.16	0.04	L/2962
3	0.29	0.09	0.35	0.20	0.24	0.04	L/2820
4* =*	0.27	0.04	0.35	0.13	0.24	0.02	L/7166
5*	0.13 0.13	0.05	0.17	0.07	0.12	0.02	L/6074
6 7	0.13 0.27	0.04 0.04	0.17 0.35	0.07 0.12	0.12 0.24	0.03 0.02	L/4199 L/4736
MAX>	0.31	0.10	0.35	0.23	0.24	0.04	L/2817
	0.K.	0.K.	0.K.	0.K.	0.K.		
* Deflections rea	duced by 0.42 p			f. Increase defle		jambs support	ing glass.
PLATE BENDIN	NG - *ALIGN ST	IOL HTIM EQU	STS WHERE PO	OSSIBLE*			
MISCELLANEOL	<u>15:</u>		ALLOWABLE S	TRESSES:	Г	STUD RE	ACTIONS
C _{fu} =		NDS 4.3.7)	F _v ' =	173	PSI		- PLANE)
F _v =	150 1		F _b ' =				LB
			APPLIED STRE		L		
$\frac{DDL + OF + LAT}{A_{x}} =$	16.50		$\frac{AFFEILD STRE}{F_v} =$	<u>-9955.</u> 90	PGI -	<i>0.</i> K.	
<i>,</i> ,,	4.13						
S _X =	3.09 I		F _b =	1439		« О.К.	
I _× =	3.04		Δ_{MAX} =	0.026			

Project: <u>MTMM</u> Subject: <u>Townhone</u> - Lat. Job No: Sheet Name: Originating Office: X Seattle Tacoma Portland Date: **Structural** Solutions

Lateral - Townhomes: R=6.5 (Wood Framed Shear Walls) Ie=1.0, Sps=0,931, Cs=0.142 (UII.) (See Design Criteria) Weight s Seismic (PSF) (SF) (LBS) AREA DESC. 35,360 2 50,660 20PSF 1768 TYP. RF L4 (RF) Walls BLW 9 PSF 1700 Floor 39,350 25 PSF 1574 15,300 2106,356 1.3 Walls 1700 9 PSF 48 PSF 1897 91,056 10 Veneer 39,350 25 PSF 1574 FLOOR { 200, 822 LZ Walls (typ) 161,472 3364 48 PSF Walls w/veneer E: 357.8 K Convert to ASD-V=C5W = (0.7) (0.142) (357.8 K) = 35.57 K 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 Seattle www.pcs-structural.com

Structural Solution	Project: Subject: originating of	MTMU Winhami - Lat Office: X Seattle	Sheet □ Tacoma □	Job Nar] Portland Dat	no: <u>19028</u> me: <u>AED</u> e: <u>7/26/21</u>
Vertical	Distrib	ution s			Act
LUL	h (ft)	$W_{\chi}(k)$	Wxhx	Wxhx ZWihi ^E	(ASD) $F_{x}(k)$
4(RF)	111	50,66			
3	9.51	106.4	1010.8	0.275	9.78
2	10.5 ¹	200,8	2108.4	0,574	20.42
		Êo	3676.5		35.61 KV
Seattle 1011 Western Avenue 9					www.pcs-structural.com

 Seattle
 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076

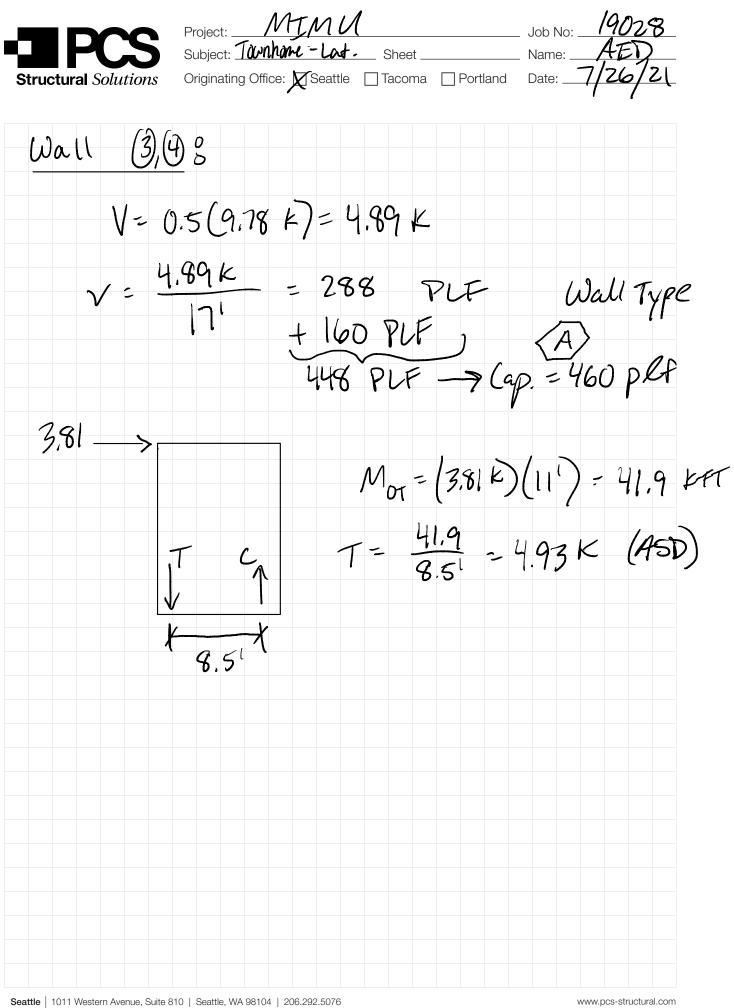
 Tacoma
 1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797

 Portland
 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746

www.pcs-structural.com

Project: <u>MTMU</u> Subject: <u>Townhone</u> - Lat. _____ Job No: ____ Sheet Name: Originating Office: X Seattle Tacoma Portland Date: **Structural** Solutions Ò Wall +(2 D $\rightarrow \text{Wall Type (A)}$ (ap. = 460 plf h N $M_{\text{OT}} = (1.36\text{K})(11) = 15 \text{ k-FT}$ PLF 271 1.36K ⇒ $T = \frac{15}{4.251} = 3.53 \text{ k} (ASD)$ 4.251 (3),(4) ; Wall V= 0.5(5.41K)=2.71K $v = \frac{2.71K}{17!} = 160 \quad \text{PLF} \rightarrow \text{Wall Type}$ (ap. = 460 plf)1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 Seattle www.pcs-structural.com Tacoma

 Tacoma
 1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797


 Portland
 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746

Project: <u>MTMM</u> Subject: <u>Tawnhane</u> - Lat. Sheet _ _____ Job No: ____ Name: Originating Office: Seattle Tacoma Portland Date: **Structural** Solutions ,36 K ⇒ Mor = (1.36K)(11) = 15 KFT T= 15 8.51 = 1.77K 8.51 LEVEL 23 Wall 2) Ø 4 V= 489 PLF? ~~ Wall Type @ +271 PLFS 760 PLF Cap. = 920 plf $M_{\text{OT}} = (3.81k)(11') = 41.9 \text{ k-FT}$ 3.81K -> $T = \frac{41.9}{4251} = 9.86 \text{ K} (ASD)$ 4.25 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 Seattle www.pcs-structural.com

 Seattle
 1011
 Western Avenue, Suite 810
 Seattle, WA 98104
 205.292.5076

 Tacoma
 1250
 Pacific Avenue, Suite 701
 Tacoma, WA 98402
 253.383.2797

 Portland
 101
 SW Main Street, Suite 280
 Portland, OR 97204
 503.232.3746

 Seattle
 1011
 Western Avenue, Suite 810
 Seattle, WA 98104
 206.292.5076

 Tacoma
 1250
 Pacific Avenue, Suite 701
 Tacoma, WA 98402
 253.383.2797

 Portland
 101
 Street, Suite 280
 Portland, OR 97204
 503.232.3746

Project: <u>MTMM</u> Subject: <u>Townhome</u> - Lad. Job No: ____ Sheet Name: Originating Office: Seattle Tacoma Portland Date: **Structural** Solutions LEVEL 1: Wall V= 1781 plf Wall Type (D) Cap = 1740 plf (DCR=1.02 VOK) 89K- $M_{0T} = (8.9 \text{ k})(10.5) = 93.45 \text{ k-FT}$ T = <u>93,45</u> = 21,99 K (ASD) Net Tension = 21,990 - $(0.6)(20 \text{ PSF})(\frac{31}{2})(5')$ - (0. G) (10PSF) (51) (30') = 20,160 # 4 Holdown Use

	Project: MTMU	Job No: 19028
Structural Solutions	Project:	Name:
Wall (3),4)		
√ = <u>10</u> ,	21 K = 601 PLF + 448 171 = 1049 PLF -> Cap.	Wall Type D = 1740 p.e.f
$5.11 \text{ k} \longrightarrow 1$	$M_{07} = (5, 11 \text{ k})(7)$ $C_{1} = \frac{5(0, 2)}{8, 5^{1}} = 6.7$	11') = 56.2 KAT 61 K (ASD)
	8.51 ¹ Use Holdown Type 2	
Seattle 1011 Western Avenue, Suite 8	310 Seattle, WA 98104 206.292.5076	www.pcs-structural.com

 Tacoma
 1250 Pacific Avenue, Suite 701
 Tacoma, WA 98402
 253.383.2797

 Portland
 101 SW Main Street, Suite 280
 Portland, OR 97204
 503.232.3746

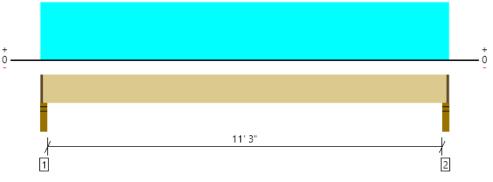
Job No: 19028 MIMU Project: Name: _ Subject: Sheet Originating Office: X Seattle Tacoma Portland Date: Structural Solutions Re-Entrant Corners Townhome 1.2 × 42 ł 3 24441-04 ۱D X Re-Entrant (prnei 131 $F_{PX} (MAX.) = 0.4 S_{DSJ} W_{PX} = 0.4 (0.92)(i)(201k) = 74k(53k)$ $F_{PX} (MIN) = 0.2 S_{DSJ} W_{PX} = 0.2(0.92)(i)(201k) = 31k(21k)$ $F_{PX} = W_{PX} \frac{2F_{X}}{2W_{PX}} = (201) \frac{35.6k}{357.9k} = 20k (ASD)$ $F_{PX} = (MTAD) (and all)$ Fpx (MIN) Controls -> 27K 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.507 www.pcs-structural.com Seattle

1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797 Tacoma 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746 Portland

MIMU Job No: _19028 Project: Name: ____ Subject: Sheet _ Originating Office: X Seattle Tacoma Portland Date: _/ Structural Solutions W= TRX = 21K = 0.61 KLF $W_{Y} = \frac{27K}{47!} = 0.64 \text{ KLF}$ X-Directions Diaphroign Shear Q Strap = $\left(\frac{21k}{2}\right) - 0.64(8) - 8.4 K$ Dist. Shear = 8.4K = 191 plf × 1.25 44' (Discontinuity) = 239 plf Re-Entrant Corner Force = (239 plf) (10/2) - (195 # (1.2k)81-0" long CS14 Straf 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 Seattle www.pcs-structural.com

1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797 Tacoma 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746 Portland

Structural Solutions	Project: Subject: Originating Office: X Seattle [_ Sheet] Tacoma Portland	Job No: <u>19028</u> Name: <u>AFD</u> Date: <u>12/6/22</u>
4-Direction 2 Diaphragm S	shear @ Strap =	(<u>27)</u> (<u>4</u>) - 0.611	(Discontinuidy) (71)=2.5Kx1.25 =3.1K
221 I-555	w/Diaphragm	Nalls = 22 ¹ . 1	.6.105 = 3.7K V OK



MEMBER REPORT

Level, Townhome Garage Louver 1 piece(s) 2 x 10 DF No.2

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	544 @ 2"	2109 (2.25")	Passed (26%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	454 @ 1' 3/4"	1915	Passed (24%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1546 @ 5' 11"	2029	Passed (76%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.149 @ 5' 11"	0.287	Passed (L/925)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.232 @ 5' 11"	0.575	Passed (L/594)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.50"	198	355	553	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.50"	198	355	553	1 1/4" Rim Board
Rim Board is assumed to carry all loads applied directly above it. bypassing the member being designed.							

it, bypa арр tiy abo

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	7' 2" o/c					
Bottom Edge (Lu)	11' 8" o/c					

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/4" to 11' 8 3/4"	N/A	3.5		
1 - Uniform (PSF)	0 to 11' 10" (Front)	2'	15.0	30.0	Default Load

Member Notes

Rim Spanning Over Louver

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Alex Davis PCS Structural Solutions	
(206) 292-5076	
adavis@pcs-structural.com	

12/8/2022 12:50:33 AM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Gravity Updates Page 1 / 1

MIMU Job No: Project: Name: Subject: Sheet _ Originating Office: Seattle 🗌 Tacoma 🗌 Portland Date: **Structural** Solutions GEOMETRY AND LOADING Check Studs Out-Of-Plane : REPRESENTS WORST CASE STUD LOADING AND HEIGHT - WALL TYPE 7 428 (D) 466(1-) 466(5 45 PSF WIND 16Wall Type 7 OK V Reaction at Top/Base = 540 lbs/2 studs = 270 lbs per stud IBC Min. Nailing = (2) 16d (0.162") FAR (2) 16d (ap. = (1.6)(141)(2) = 451 lbs > 270 lbs Peaction @ Top/Base οK 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 Seattle www.pcs-structural.com

 Seattle
 1011
 Western Avenue, Suite 810
 Seattle, WA 98104
 206.292.5076

 Tacoma
 1250
 Pacific Avenue, Suite 701
 Tacoma, WA 98402
 253.383.2797

 Portland
 101
 Street, Suite 280
 Portland, OR 97204
 503.232.3746

	200	i i oject	•			JOD Rumber.	1-1-020
	-65		Sheet:	1 of		Name:	AK
Structura	al Solutions	0	riginating Office:	Seattle		Date:	12/07/22
STUD WA		SN - C.2	2			2018	3 ND5/2018
IALL DATA							
JMBER TYPE		DF#2	APF	PLIED LOADS:	P _{dead} =	428	LBS
F _b =	900			45.0 PSF	P _{LIVE} =	466	LBS
F _c =	1350	PSI	M _{SEISMIC} =	5.0 PSF	P _{SNOM} =	466	LBS
F _{c⊥} =	625	PSI			P _{WIND} =	0	LBS
E =	1.60E+06	PSI			P _{SEISMIC} =	0	LBS
	(-)						
TUD SIZE:	(2)		MIS	CELLANEOUS:	HEIGHT =	18	
A _× =					SPACING =	16	
S _× =				EC	CCENTRICITY =	0.1	IN
I _× =	41.59	IN ⁴		C	F(COMPRESSION) =	1.10	(NDS 4.3.6)
$C_{F(BENDING)}$ =		(NDS 4.3.6)				APPLY?	
F _{cE} =		PSI		$C_{\rm SYS(BENDING)}$ =		YES	(SDPWS T3.1.1.
C _b =				$C_{r(BENDING)}$ =	1.15	YES	(NDS 4.3.9)
OAD CASES	- IBC 1605.3.	1					
ASE 1	DEAD + LIVE +	5 PSF LAT.		CASE 4	DEAD + 0.45MIN	D + 0.75LIVE +	0.755NOW
	DEAD + SNOW +			CASE 5	DEAD + 0.60MIN	D	
ASE 3	DEAD + 0.75LIV	'E + 0.755NOW	+ 5 PSF LAT.		DEAD + 0.75EISI		
	STRESSES - CA	PEP NDG T	2.3.2, CP PER N	CASE 7	DEAD + 0.535EK		E + 0.755NOP
	<u> </u>		<u>2.3.2, 00 ER R</u>				
CASE	$c_{\scriptscriptstyle D}$	Fc*	F _{cE} /F _c *	C_{P}	F,'	F _b '	Fc⊥
1	1.00	1485	0.21	0.200	296	1346	703
2 \$ 3	1.15	1708	0.18	0.175	299	1547	703
4 \$ 5	1.60	2376	0.13	0.127	302	2527	703
6 \$ 7	1.60	2376	0.13	0.127	302	2153	703
APPLIED STR	ESSES - NDS C	HAPTER 3 D	ESIGN EQUATIO	NS			
CASE		fc	м	M _{ECC.}	м	f _b	
1	APPLIED 894	54	M _{LAT. LOAD} 270	T	M _{TOTAL} 275	218	
2	894	54	270	7	275	218	
3	1127	68	270	9	276	219	
4	1127	68	1094	9	1099	872	
5	428	26	1458	4	1460	1159	
6	428	26	189	4	191	152	
7	1127	68	143	٩	149	118	
DESIGN CHEC	KS - COMBINE	D STRESS C	HECK PER NDS	EQN 3.9-3			
CAGE	E /E '	E /E '	£ /E	Combined	£ /=	Deflection	1.72
CASE 1	f _c /F _c ' 0.18	f _b /F _b ' 0.16	f _c ∕F _{c⊥} 0.08	Combined 0.23	f _c ∕F _{cE} 0.17	Deflection 0.24	L/? L/897
2	0.18	0.16 0.14	0.08	0.25	0.17	0.24 0.24	L/897
2	0.23	0.14 0.14	0.10	0.23	0.22	0.24	L/893
4*	0.23	0.35	0.10	0.49	0.22	0.50	L/432
5*	0.09	0.46	0.04	0.51	0.08	0.66	L/326
6	0.09	0.07	0.04	0.08	0.08	0.17	L/1289
7	0.23	0.05	0.10	0.12	0.22	0.13	L/1655
MAX>	0.23	0.46	0.10	0.51	0.22	0.66	L/326
	0.K.	0.K.	0.K.	0.K.	<i>0</i> .K.		
			604.3 footnote f		ction by 1.4 for j	ambs supportin	ng glass.
LATE BENDI	ng - "Align 5"	JC HINY CUU	DISTS WHERE PC				
ISCELLANEO	NS:		ALLOMABLE S	TRESSES:	Γ	STUD RE	ACTIONS
C _{fu} =	1.15	(NDS 4.3.7)	F _v ' =	173	PSI	(OUT - OF	- PLANE)
F _V =	150	PSI	F _b ' =	1547	PSI	540	O LB
		<i>c</i>			-		
	TE PROPERTIE		APPLIED STRE				
A _× =			f _v =			< 0.K.	
S _× =			f _b =			< 0.K.	
I _× =			Δ_{MAX} =	0.015			
ud Wall - IBC201	15 - Revised 12/19/	2016			19028 IBC	18StudWall Desi	nn AFD/Exterio

Project: Mercer Island

____ Job Number: ____ 19-028

	Project:	IMU	Job No: <u>19028</u>
	Subject:	Sheet Seattle Tacoma Portla	Name:
Structural Solutions	Originating Office:	Seattle 🗌 Tacoma 🗌 Portla	nd Date: <u>12/8/12</u>
Check Wo	rst Case	BM Ont-OF-F	lancio
		-	
Trib = 18	- 91	Wind Area = "	20 sf -> 50sf
11102			Pressures
		NL	Pressures (Lonservative)
	N V		
	tr	ħ	1
	X		-
		0'-0"	
		270 5.5	
WL = [9	(J31 PSF)	= 279 PLF	
0			
Sci	c Enercal	ic Report	
lox1	0 or 5-	-1/4×91/2 SCL	OK

Vood Beam				Project Fi	ile: Out of Pla	ane Beam	Calc.ec6
IC# : KW-06014122, Build:20.22.10.25 DESCRIPTION: Solid Sawn BM	PCS STRUC	TURAL SOLUTION	S		(c) ENE	ERCALC IN	IC 1983-2022
ODE REFERENCES							
Calculations per NDS 2018, IBC 2018, CBC 2 .oad Combination Set : IBC 2015	2019, ASCE 7-16						
aterial Properties							
Analysis Method : Allowable Stress Design Load Combination : IBC 2015		Fb + Fb - Fc - Prll	1,350.0 ps 1,350.0 ps	si Eb	<i>lodulus of Ela</i> bend- xx ninbend - xx	1,60	0.0ksi 0.0ksi
Nood Species : Douglas Fir-Larch Nood Grade : No.1		Fc - Perp Fv	925.0 ps 625.0 ps 170.0 ps	si Si	minbend - XX		
Beam Bracing : Completely Unbraced		Ft	675.0 ps	si De	ensity	31.2	210pcf
*		W(0.280)		¢			×
		6x10					×
	Sn	an = 10.0 ft					
	She	an – 10.0 n					
¢							
•							•
• oplied Loads		Service lo	ads entered. Lo	ad Factors	will be applie	ed for calc	sulations.
Beam self weight NOT internally calculated an		Service lo	ads entered. Lo	ad Factors	will be applie	ed for calc	ulations.
eam self weight NOT internally calculated a .oads on all spans Uniform Load on ALL spans:W = 0.280 k		Service lo	ads entered. Lo	ad Factors	will be applie	ed for calc	
Beam self weight NOT internally calculated an oads on all spans Uniform Load on ALL spans : W = 0.280 k ESIGN SUMMARY laximum Bending Stress Ratio =	k/ft 0.143 1	Maximum Sho	ear Stress Ra	tio	will be applie	Design 0.	OK 075 : 1
eeam self weight NOT internally calculated at oads on all spans Uniform Load on ALL spans : W = 0.280 k ESIGN SUMMARY aximum Bending Stress Ratio = Section used for this span	k/ft 0.143 1 6x10	Maximum Sho	ear Stress Ra used for this spa	tio	=	Design 0. 6	0K 075 : 1 x10
eeam self weight NOT internally calculated at oads on all spans Uniform Load on ALL spans : W = 0.280 k ESIGN SUMMARY laximum Bending Stress Ratio =	k/ft 0.143 1	Maximum Sho	ear Stress Ra	tio		Design 0. 20	OK 075 : 1
eam self weight NOT internally calculated at oads on all spans Uniform Load on ALL spans : W = 0.280 k ESIGN SUMMARY aximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination	k/ft 0.143 1 6x10 304.61psi 2,130.74psi +0.60W	Maximum Sho Section u Load Cor	ear Stress Ra ised for this spa fv: Actual F'v mbination	tio an	=	Design 0. 6 20 272 +0.0	OK 075 : 1 x10).42 psi 2.00 psi 60W
eam self weight NOT internally calculated at oads on all spans Uniform Load on ALL spans : W = 0.280 k SIGN SUMMARY aximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span =	k/ft 0.143 1 6x10 304.61psi 2,130.74psi +0.60W 5.000ft	Maximum Sho Section u Load Cor Location	ear Stress Ra ised for this spa fv: Actual F'v mbination of maximum or	tio an	=	Design 0. 6 20 272 +0.0	0K 075 : 1 x10 0.42 psi 2.00 psi 60W .000 ft
ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection	k/ft 0.143 1 6x10 304.61psi 2,130.74psi +0.60W 5.000ft Span # 1 0.101 in Ratio = 0 in Ratio =	Maximum Sho Section u Load Cor Location Span # w 1190 >=360 0 <360	ear Stress Ra ised for this spa fv: Actual F'v mbination of maximum or /here maximum Span: 1 : W Or n/a	tio an span occurs Ily	=	Design 0. 6 20 272 +0.0	0K 075 : 1 x10 0.42 psi 2.00 psi 60W .000 ft
deam self weight NOT internally calculated at oads on all spans Uniform Load on ALL spans : W = 0.280 k ESIGN SUMMARY aximum Bending Stress Ratio Section used for this span fb: Actual F'b Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection	k/ft 0.143 1 6x10 304.61 psi 2,130.74 psi +0.60W 5.000ft Span # 1 0.101 in Ratio =	Maximum Sho Section u Load Cor Location Span # w 1190 >=360 0 <360 1984 >=180	ear Stress Ra used for this spa fv: Actual F'v mbination of maximum or /here maximum Span: 1 : W Or	tio an span occurs Ily	=	Design 0. 6 20 272 +0.0	0K 075 : 1 x10 0.42 psi 2.00 psi 60W .000 ft
Beam self weight NOT internally calculated at oads on all spans Uniform Load on ALL spans : W = 0.280 k ESIGN SUMMARY aximum Bending Stress Ratio Section used for this span fb: Actual F'b Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Upward Total Deflection Maximum Forces & Stresses for Load	k/ft 0.143 1 6x10 304.61psi 2,130.74psi +0.60W 5.000ft Span # 1 0.101 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio =	Maximum Shu Section u Load Cor Location Span # w 1190 >=360 0 <360 1984 >=180 0 <180	ear Stress Ra used for this spa fv: Actual F'v mbination of maximum or /here maximum Span: 1 : W Or n/a Span: 1 : +0.60 n/a	tio an occurs aly W	=	Design 0. 20 272 +0.0 0 Spar	0K 075 : 1 x10 0.42 psi 2.00 psi 60W .000 ft 0 # 1
earn self weight NOT internally calculated at oads on all spans Uniform Load on ALL spans : W = 0.280 k ESIGN SUMMARY aximum Bending Stress Ratio Section used for this span fb: Actual F'b Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Max Downward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection	k/ft 0.143 1 6x10 304.61psi 2,130.74psi +0.60W 5.000ft Span # 1 0.101 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 1 Combinations	Maximum Shu Section u Load Cor Location Span # w 1190 >=360 0 <360 1984 >=180 0 <180	ear Stress Ra used for this spa fv: Actual F'v mbination of maximum or /here maximum Span: 1 : W Or n/a Span: 1 : +0.60 n/a	tio an occurs nly WW		Design 0. 20 272 +0.1 0 Spar	OK 075 : 1 x10 0.42 psi 2.00 psi 60W .000 ft 0 # 1
earn self weight NOT internally calculated at oads on all spans Uniform Load on ALL spans : W = 0.280 k ESIGN SUMMARY aximum Bending Stress Ratio Section used for this span fb: Actual F'b Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Max Downward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection	k/ft 0.143 1 6x10 304.61psi 2,130.74psi +0.60W 5.000ft Span # 1 0.101 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 1 Combinations	Maximum Shu Section u Load Cor Location Span # w 1190 >=360 0 <360 1984 >=180 0 <180	ear Stress Ra used for this spa fv: Actual F'v mbination of maximum or /here maximum Span: 1 : W Or n/a Span: 1 : +0.60 n/a	tio an occurs aly W	= = = = = F'b	Design 0. 6 20 272 +0.0 0 Spar	OK 075 : 1 x10 0.42 psi 2.00 psi 60W .000 ft 0 # 1 ar Values fv F'
eam self weight NOT internally calculated an oads on all spans Uniform Load on ALL spans : W = 0.280 k SIGN SUMMARY aximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Downward Transient Deflection Max Downward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	k/ft 0.143 1 6x10 304.61psi 2,130.74psi +0.60W 5.000ft Span # 1 0.101 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 1 Combinations CM C _t CLx 0	Maximum Sho Section u Load Cor Location Span # w 1190 >=360 0 <360 1984 >=180 0 <180 C _F Cfu ^C i	ear Stress Ra Jsed for this spa fv: Actual F'v mbination of maximum or /here maximum Span: 1 : W Or n/a Span: 1 : +0.60 n/a C Mome C Mome	tio an occurs nly WW	= = = = = F ⁻ b 0.0	Design 0. 272 +0.0 0 Spar Spar	OK 075 :1 x10 0.42 psi 2.00 psi 60W .000 ft h # 1 ar Values fv F' 0.0
deam self weight NOT internally calculated at oads on all spans Uniform Load on ALL spans : W = 0.280 H SIGN SUMMARY aximum Bending Stress Ratio section used for this span fb: Actual F'b Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Total Deflection	k/ft 0.143 1 6x10 304.61psi 2,130.74psi +0.60W 5.000ft Span # 1 0.101 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 1 Combinations CM Ct CLx 0	Maximum Sho Section u Load Cor Location Span # w 1190 >=360 0 <360 1984 >=180 0 <180 C _F Cfu C i .000 1.00 1.00	ear Stress Ra Ised for this spa fy: Actual F'v mbination of maximum or /here maximum Span: 1 : W Or n/a Span: 1 : +0.60 n/a C Mome C Mome 1.00	tio an occurs nly WW	= = = = = F'b	Design 0. 6 20 272 +0.0 0 Spar	OK 075 : 1 x10 0.42 psi 2.00 psi 60W .000 ft 0 # 1 ar Values fv F [*]
Beam self weight NOT internally calculated at oads on all spans Uniform Load on ALL spans : W = 0.280 H Uniform Load on ALL spans : W = 0.280 H ESIGN SUMMARY Baximum Bending Stress Ratio = Section used for this span = fb: Actual = F'b = Load Combination = Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection (C) Max Upward Total Deflection (C) Maximum Forces & Stresses for Load Segment Length Span # Max V CD C C Length = 10.0 ft 1 0.90 .60W	k/ft 0.143 1 6x10 304.61psi 2,130.74psi +0.60W 5.000ft Span # 1 0.101 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 1 Combinations CM Ct CLx (1) 1.00 1.00 0.99 1	Maximum Sho Section u Load Cor Location Span # w 1190 >=360 0 <360 1984 >=180 0 <180 C _F Cfu C i .000 1.00 1.00	ear Stress Ra used for this spa fv: Actual F'v mbination of maximum or /here maximum Span: 1 : W Or n/a Span: 1 : +0.60 n/a C Mome C Mome C 1.00	tio an occurs aly W ent Values fb	= = = = = F ⁻ b 1,206.6	Design 0. 6 20 272 +0.1 0 Spar Spar V 0.00 0.00 0.00	OK 075 : 1 x10 0.42 psi 2.00 psi 60W .000 ft h # 1
Beam self weight NOT internally calculated at loads on all spans Uniform Load on ALL spans : W = 0.280 k ESIGN SUMMARY laximum Bending Stress Ratio Section used for this span fb: Actual F'b Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Stress Ratios Segment Length Span # M V CD Length = 10.0 ft 1 0.143 0.075	k/ft 0.143 1 6x10 304.61psi 2,130.74psi +0.60W 5.000ft Span # 1 0.101 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 1 Combinations CM C _t CLx 0 1.00 1.00 0.99 1	Maximum Sho Section u Load Cor Location Span # w 1190 >=360 0 <360 1984 >=180 0 <180 C _F Cfu C i .000 1.00 1.00 .000 1.00 1.00	ear Stress Ra used for this spa fv: Actual F'v mbination of maximum or here maximum Span: 1 : W Or n/a Span: 1 : +0.60 n/a C Mome C Mome C 1.00 1.00 1.00 2.10	tio an occurs aly W ent Values fb	= = = = = = F ⁻ b 1,206.6 0.0	Design 0. 6 20 272 +0.1 0 Spar Spar V 0.00 0.00 0.00	OK 075 : 1 x10 0.42 psi 2.00 psi 60W .000 ft .00 .00 .00 .00 .00 .00

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl Loc	ation in Span	Load Combination	Max. "+" Defl Loca	tion in Span
W Only	1	0.1008	5.036		0.0000	0.000

Project Title:Mercer Island Mixed UseEngineer:AEDProject ID:19028Project Descr:

Wood Beam				Project File: Out of Plane Beam Calc.ec6		
LIC# : KW-06014122, Build:20.22.10.25	PC	S STRU	CTURAL SOLUTIONS	(c) ENERCALC INC 1983-202		
ESCRIPTION: Solid Sawn BM						
Vertical Reactions			Support notation : Far left is #1	Values in KIPS		
Load Combination	Support 1	Suppor	t 2			
Max Upward from all Load Conditions	1.400	1.4	00			
Max Upward from Load Combinations	0.840	0.8	40			
Max Upward from Load Cases	1.400	1.4	00			
+0.60W	0.840	0.8	40			
+0.450W	0.630	0.6	30			
W Only	1.400	1.4	00			

Nood Beam													Project Fi	ile: Out of P	Plane Bea	m Calc.	ec6
IC# : KW-06014122,						PC	S STRI	JCTURA	AL SOLU	TION	S			(c) EN	NERCALC	INC 1983	3-2022
ODE REFERE	NCES																
Calculations per	NDS 20	18, IBC	C 2018,	CBC	2019	, ASC	E 7-1	6									
_oad Combination		IBC 20	15														
laterial Proper	rties																
Analysis Method :			ss Desig	jn					Fb +			400.0 psi		lodulus of E	-		
Load Combination	IBC 20	15						-	Fb -			400.0 psi	=.0	end- xx	, .	800.0ks	
									Fc - Prl Fc - Pe			500.0 psi 425.0 psi	En	ninbend - x	x 9'	14.88ks	I
	∶iLevel⊺ : Paralla								Fv	īΡ		190.0 psi					
	. i arana		1.0L						Ft			755.0 psi	De	ensity	4	5.070 pc	f
Beam Bracing :	Comple	etely Un	braced														
									00)								
×			¢					W(0.2	80)				\$				×
×																	×
								5.25x9	9.5								\mathbf{X}^{-}
																	m
							ę	Span = 1	10.0 ft								
•																	•
•																	•
↓																	•
plied Loads									Servi	ce lo	ads ent	ered. Load	d Factors	will be appl	lied for ca	alculation	→ ns.
	nt NOT ir	nternall	y calcu	lated	and a	dded			Servi	ce lo	ads ent	ered. Load	d Factors	will be appl	lied for ca	alculation	→ ns.
Beam self weigh		nternall	y calcu	lated	and a	dded			Servi	ce lo	ads ent	ered. Load	d Factors	will be appl	lied for ca	alculation	→ ns.
Beam self weigh	ins		-			dded			Servi	ce lo	ads ent	ered. Load	d Factors	will be appl	lied for ca	alculation	→
Beam self weigh Loads on all spa Uniform Load	ins I on ALL		-			dded			Servi	ce lo	ads ent	ered. Load	d Factors	will be appl		alculatior	• ns.
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir	ins I on ALL A RY ng Stres	. spans s Ratio	: W =				85: 1	Ma				ered. Load		will be appl	Desiç		
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo	ins I on ALL ARY ng Stres r this spa	. spans s Ratio	: W =) k/ft	0.08 .25x9	.5	Ma	aximun	n Sh	ear Str	ess Ratio this span	D		Desig 5.2	gn OK 0.070 : 5x9.5	1
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac	ins I on ALL ARY ng Stres r this spa	. spans s Ratio	: W = = =) k/ft 5	0.0 .25x9 319.	.5 11psi	Ма	aximun	n Sh	ear Str used for fv: A	ess Ratio this span	D	=	Desig	gn OK 0.070 : 5x9.5 21.39 p	1 si
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac Fb	Ins I on ALL ARY ng Stres r this spa ctual	. spans s Ratio	: W =) k/ft 5	0.0 .25x9 319.7 ,771.8	. 5 11psi 37psi	Ma	aximun Sec	n Sh tion u	ear Str used for fv: Ao F'v	ess Ratio this span ctual	D	=	Desig 5.2	9n OK 0.070 : 5x9.5 21.39 p 04.00 p	1 si
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati	Ins I on ALL ARY ng Stres r this spa ctual	spans s Ratio n	: W = = = =) k/ft 5	0.0 .25x9 319. ,771.8 +0.60	9 .5 11psi 87psi W	Ма	aximun Sec Load	n Shr tion u d Cor	ear Str used for fv: Ar F'v mbinatio	ess Ratio this span ctual	0	=	Desig 5.2	g n OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W	1 si si
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max	Ins I on ALL ARY ng Stres r this spa ctual ion kimum on	spans s Ratio n	: W = = = = =) k/ft 5 3	0.0 .25x9 319. ,771.8 +0.60 5.0	9 .5 11psi 37psi W 00ft	Ма	aximun Sec Loac	n Sh tion u d Cor ation	ear Str used for fv: Ar F'v mbinatio of maxi	ess Ratio this span ctual on mum on s	D Span	=	Desig 5.2 3(+(g n OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W 0.000 ft	1 si si
ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max Span # where m	Ins I on ALL ARY ng Stres r this spa ctual ion kimum on naximum	spans s Ratio n	: W = = = =) k/ft 5 3	0.0 .25x9 319. ,771.8 +0.60	9 .5 11psi 37psi W 00ft	Ма	aximun Sec Loac	n Sh tion u d Cor ation	ear Str used for fv: Ar F'v mbinatio of maxi	ess Ratio this span ctual	D Span	=	Desig 5.2 3(+(g n OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W	1 si si
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max Span # where m	Ins I on ALL ARY ng Stres r this spa ctual ion kimum on naximum ection	s pans s Ratio n span occurs	: W = = = = =) k/ft 5 3	0.0 .25x9 319. ⁻ ,771.8 +0.60 5.0 Span #	9 .5 11psi 87psi ₩ 00ft 1		Aximun Sec Loa Loca Spa	n Sh tion u d Cor ation n # w	ear Str used for fv: Ar F'v mbinatic of maxi vhere m	ess Ratio this span ctual on mum on s aximum o	D Span ccurs	=	Desig 5.2 3(+(g n OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W 0.000 ft	1 si si
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max Span # where n Maximum Defle Max Downwar	Ins I on ALL ARY ng Stres r this spa ctual ion cimum on naximum ection rd Transid	s spans s Ratio n span occurs ent Defle	: W = = = = = =) k/ft 5 3 0.094	0.03 319. ⁻ ,771.8 +0.60 5.0 Span # 4 in R	9.5 11 psi 37 psi ₩ 00ft 1 atio =		Aximun Sec Loa Loca Spa 78 >=36	n Sh tion u d Cor ation n # w	ear Str used for fv: Ar F'v mbinatic of maxi vhere m Span: 2	ess Ratio this span ctual on mum on s	D Span ccurs	=	Desig 5.2 3(+(g n OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W 0.000 ft	1 esi esi
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max Span # where n Maximum Defl Max Downwar Max Upward 1	Ins I on ALL ARY ng Stres r this spa ctual ion ctual ion naximum ection rd Transient	. spans s Ratio n span occurs ent Defle Deflecti	: W = = = = = = = =) k/ft 5 3 0.094	0.03 . 25x9 319. ⁻ ,771.8 +0.60 5.0 5pan # 4 in R 1 in R	.5 11 psi 37 psi W 00ft 1 atio = atio =	127	aximun Sec Load Loca Spa 78 >=36 0<360	n Shution u d Cor ation n # w	ear Str used for fv: Ar F'v mbinatic of maxi vhere m Span: ^ n/a	ess Ratio this span ctual mum on s aximum o I : W Only	o span ccurs	=	Desig 5.2 3(+(g n OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W 0.000 ft	1 esi esi
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max Span # where n Maximum Defle Max Downwar	Ins I on ALL ARY ng Stres r this spa ctual ion kimum on naximum ection rd Transie fransient rd Total D	. spans s Ratio n s span occurs ent Defle Deflectio	: W = = = = = = = =) k/ft 5 3 0.094 0.056	0.03 319. ⁻ ,771.8 +0.60 5.0 Span # 4 in R	.5 11 psi 37 psi W 00ft 1 atio = atio = atio =	127	Aximun Sec Loa Loca Spa 78 >=36	n Shr tion u d Cor ation n # w 60) 30	ear Str used for fv: Ar F'v mbinatic of maxi vhere m Span: ^ n/a	ess Ratio this span ctual on mum on s aximum o	o span ccurs	=	Desig 5.2 3(+(g n OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W 0.000 ft	1 esi esi
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max Span # where m Maximum Defle Max Downwar Max Upward 1 Max Downwar	Ins I on ALL ARY ng Stres r this spa ctual ion ctual ion naximum ection rd Transient fransient fotal Defi	s spans s Ratio in span occurs ent Defle Deflectio ection Stress	: W = = = = ection n ses for	0.280	0 k/ft 5 3 0.094 0.056	0.03 . 25x9 319. ,771.8 +0.60 5.0 Span # 4 in R) in R 3 in R) in R	11 psi 37 psi W 00ft 1 atio = atio = atio = atio =	127 213	aximun Sec Load Loca Spa 78 >=36 0<360 30 >=18	n Shr tion u d Cor ation n # w 60) 30	ear Str used for fv: Ar F'v mbinatic of maxi where m Span: 1 N/a Span: 1	ess Ratio this span ctual mum on s aximum o I : W Only	o span ccurs	=	Desig 5.2 30 +0 Sp	g n OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W 0.000 ft an # 1	1 si si
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max Span # where n Maximum Defle Max Downwar Max Upward 1 Max Downwar Max Upward 1 Max Downwar Max Upward 1	Ins I on ALL ARY ng Stres r this spa ctual ion cimum on naximum ection rd Transient fransient fotal Defi rces &	s spans s Ratio in span occurs ent Defle Deflectio Deflectio Stress Max St	: W = = = = = ection n	0.280) k/ft 5 3 0.094 (0.056 (0.056	0.03 .25x9 319. ,771.8 +0.60 5.0 Span # 1 in R 0 in R 0 in R 0 in R 0 in R	5 11 psi 37 psi W 00ft 1 atio = atio = atio = atio = atio =	127 213	Aximun Sec Loa Loca Spa 78 >=36 0 <360 30 >=18 0 <180	n Sh tion u d Cor ation n # w 60) 30)	ear Str used for fv: Au F'v mbinatic of maxi vhere m Span: ^ n/a Span: ^ n/a	ess Ratio this span ctual on mum on s aximum o I : W Only I : +0.60W	o span ccurs		Desig 5.2 30 +0 Sp	g n OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W 0.000 ft	1 si si
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max Span # where n Maximum Defl Max Downwar Max Upward T Max Downwar	Ins I on ALL ARY ng Stres r this spa ctual ion cimum on naximum ection rd Transient fransient fotal Defi rces &	s spans s Ratio in span occurs ent Defle Deflectio Deflectio Stress Max St	: W = = = = ection n ses for	0.280) k/ft 5 3 0.094 (0.056 (0.056	0.03 . 25x9 319. ,771.8 +0.60 5.0 Span # 4 in R) in R 3 in R) in R	5 11 psi 37 psi W 00ft 1 atio = atio = atio = atio = atio =	127 213	Aximun Sec Loa Loca Spa 78 >=36 0 <360 30 >=18 0 <180	n Shr tion u d Cor ation n # w 60) 30	ear Str used for fv: Au F'v mbinatic of maxi vhere m Span: ^ n/a Span: ^ n/a	ess Ratio this span ctual on mum on s aximum o I : W Only I : +0.60W	o span ccurs /	= = = = F'b	Desig 5.2 30 +0 Sp: 	gn OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W 0.000 ft an # 1	1 si si <u>ues</u> F'v
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max Span # where m Maximum Defl Max Downwar Max Upward 1 Max Downwar Max Upward 1 Max Downwar Max Upward 1 Max Downwar Max Upward 1 Coad Combination Segment Length	Ins I on ALL ARY ng Stres r this spa ctual ion cimum on naximum ection rd Transient fransient fotal Defi rces &	s spans s Ratio in span occurs ent Defle Deflectio Deflectio Stress Max St	: W = = = = = ection ion n ses for ress Ra	0.280	0 k/ft 5 3 0.094 0.056 0 0.056	0.03 .25x9 319. ,771.8 +0.60 5.0 Span # 4 in R) in R) in R) in R) in R D in R D in R	S.5 11 psi 37 psi W 00ft 1 atio = atio = atio = atio = atio = CLx	127 213 15 C _F	aximun Sec Load Loca Spa 78 >=36 0<360 30 >=18 0<180 Cfu	n Sh tion u d Cor ation n # w 60) 30) C i	ear Str used for fv: Ar F'v mbinatic of maxi vhere m Span: ^ n/a Span: ^ n/a C	ess Ratio this span ctual on mum on s aximum o I : W Only I : +0.60W	pan ccurs /		Desig 5.2 30 +0 Sp 5 Sp	gn OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W 0.000 ft an # 1	1 si si <u>F'v</u> C
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max Span # where n Maximum Defle Max Downwar Max Upward 1 Max Downwar Max Upward 1 Max Downwar Max Upward 1	Ins I on ALL ARY ng Stres r this spa ctual ion cimum on naximum ection rd Transient fransient fotal Defi rces &	s spans s Ratio in span occurs ent Defle Deflectio Deflectio Stress Max St	: W = = = = = ection ion n ses for ress Ra	0.280	0 k/ft 5 3 0.094 0.056 0 0.056	0.03 .25x9 319. ,771.8 +0.60 5.0 Span # 4 in R) in R) in R) in R) in R D in R D in R	S.5 11 psi 37 psi W 00ft 1 atio = atio = atio = atio = atio = CLx	127 213 15	aximun Sec Load Loca Spa 78 >=36 0<360 30 >=18 0<180 Cfu	n Sh tion u d Cor ation n # w 60) 30) C i	ear Str used for fv: Au F'v mbinatic of maxi vhere m Span: ^ n/a Span: ^ n/a	ess Ratio this span ctual on mum on s aximum o I : W Only I : +0.60W	pan ccurs /	= = = = F'b	Desig 5.2 30 +0 Sp: 	gn OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W 0.000 ft an # 1	1 si si <u>F'v</u> 0
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max Span # where m Maximum Defl Max Downwar Max Upward 1 Max Downwar Max Upward 1 Max Downwar Max Upward 1 Max Downwar Max Upward 1 Coad Combination Segment Length	Ins I on ALL ARY ng Stres r this spa ctual ion ctual ion ctual rection rd Transient rd Transient rd Total D Fotal Defl rces & Span #	s spans s Ratio in span occurs ent Defle Deflectio Deflectio Stress Max St	: W = = = = = ection ion n ses for ress Ra	0.280	0 k/ft 5 3 0.094 0.056 0 0.056 0 0.056 0 0 0.056 0 0 0.056 0 0 0.094 0 0 0.094 0 0.094 0 0.094 0 0.005 0 0 0 0.005 0 0 0 0.005 0 0 0 0	0.03 .25x9 319. ,771.8 +0.60 5.0 Span # 4 in R 0 in R 0 in R 0 in R 0 in R 0 in R 0 in R 1 in R 0 in C 1.00	5 11 psi 37 psi W 00ft 1 atio = atio = atio = atio = atio = CLx 0.99	127 213 15 C _F	aximun Sec Load Locc Spa 78 >=36 0<360 30 >=18 0<180 Cfu 1.00	n Shi tion u d Cor ation n # w 60) 30) C i 1.00	ear Str used for fv: Ar F'v mbinatic of maxi vhere m Span: ^ n/a Span: ^ n/a C	ess Ratio this span ctual on mum on s aximum o I : W Only I : +0.60W	pan ccurs /	= = = = = F'b 0.0	Desig 5.2 30 +0 Sp 5 Sp	gn OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W 0.000 ft an # 1	1 si si
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max Span # where n Maximum Defl Max Downwar Max Upward T Max Downwar Max Upward T	Ins I on ALL ARY ng Stres r this spa ctual ion ctual ion ctual rection rd Transient rd Transient rd Total D Fotal Defl rces & Span #	s spans s Ratio in span occurs ent Defle Deflectio Deflectio Stress Max St	: W = = = = = ection ion n ses for ress Ra	0.280	0 k/ft 5 3 0.09 ² 0.056 0 0.056 0 0 0.056 0 0 0.056 0 0 0.056 0 0 0.09 ² 0 0.09 ² 0 0.09 ² 0 0.09 ² 0 0.09 ² 0.09 ² 0.056 0.09 ² 0.00 ² 0.056 0.00 ² 0.056 0.00 ² 0.056 0.00 ² 0.056 0.00 ² 0.056 0.00 ² 0.056 0.00 ² 0.056 0.00 ² 0.056 0.00 ² 0.056 0.00 ² 0.00 ² 0.056 0.00 ² 0.056 0.00 ² 0.00 ² 0 0.00 ² 00	0.04 .25x9 319. ,771.8 +0.60 5.0 Span # 1 in R 0 in R 0 in R 0 in R 0 in R 0 in R 1.00 1.00	<pre>b.5 11 psi 37 psi W 00ft 1 atio = atio = atio = atio CLx 0.99 0.99</pre>	127 213 IS <u>C_F</u> 1.000 1.000	Aximun Sec Loaa Loca Spa 78 >=36 0 <360 30 >=18 0 <180 Cfu 1.00 1.00	n Sh tion u d Cor ation n # w 60) 30) 1.00 1.00	ear Str used for f': Au F'v mbinatic of maxi vhere m Span: 7 n/a Span: 7 n/a C r 1.00	ess Ratio this span ctual on mum on s aximum o I : W Only I : +0.60W	p span ccurs / / t Values fb	= = = = = F ^r b 0.0 2,141.0	Desig 5.2 30 +0 Sp 50 Sp	9n OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W 0.000 ft an # 1 hear Value fv 0.0 0.0	1 si si <u>F'v</u> 0 171
Beam self weigh Loads on all spa Uniform Load ESIGN SUMM Maximum Bendir Section used fo fb: Ac F'b Load Combinati Location of max Span # where n Maximum Defle Max Downwar Max Upward 1 Max Downwar Max Upward 1	Ins I on ALL ARY ng Stres r this spa ctual ion ctual ion ctual ion rection rd Transient rd Transient rd Total D fotal Defi rces & Span #	s spans s Ratio n span occurs ent Defle Deflectio ection Stress Max St M	: W = = = = ection n ses for ress Ra V	0.280 r Loa tios CD 0.90	0 k/ft 5 3 0.094 (0 0.056 (0 d Co 1.00 1.00 1.00	0.04 .25x9 319. ,771.8 +0.60 5.0 Span # 4 in R 0 in R 6 in R 0 in R 0 in R 0 in R 1.00 1.00 1.00	5 11 psi 37 psi W 00ft 1 atio = atio = atio = atio = atio = cLx 0.99 0.98	127 213 IS <u>C_F</u> 1.000 1.000	Aximun Sec Load Loca Spa 78 >=36 0 <360 30 >=18 0 <180 Cfu 1.00 1.00 1.00	n Shr tion u d Cor ation n # w 60) 30) C i 1.00 1.00 1.00	ear Str used for fv: Au F'v mbinatic of maxi vhere m Span: ^ n/a Span: ^ n/a C r 0 1.00	ess Ratio this span ctual on mum on s aximum o I : W Only I : +0.60W Momen M	p span ccurs / / t Values fb	= = = = = = F ['] b 0.0 2,141.0 0.0	Desig 5.2 30 +0 Sp 50 50 0.00 0.00 0.00 0.00	9 n OK 0.070 : 5x9.5 21.39 p 04.00 p 0.60W 0.000 ft an # 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 si si <u>F'v</u> 0 171 0

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl Loca	ation in Span	Load Combination	Max. "+" Defl Locat	tion in Span
W Only	1	0.0939	5.036		0.0000	0.000

Project Title:Mercer Island Mixed UseEngineer:AEDProject ID:19028Project Descr:

Wood Beam				Project File: Out of Plane Beam Calc.ec6
LIC# : KW-06014122, Build:20.22.10.25	PCS STRUCTURAL SOLUTIONS			(c) ENERCALC INC 1983-2022
DESCRIPTION: SCL BM				
Vertical Reactions		:	Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support	2	
Max Upward from all Load Conditions	1.400	1.4	00	
Max Upward from Load Combinations	0.840	0.8	40	
Max Upward from Load Cases	1.400	1.4	00	
+0.60W	0.840	0.8	40	
+0.450W	0.630	0.6	30	
W Only	1.400	1.4	00	

S201.1 LEVEL 1M FLOOR FRAMING PLAN

Node Coordinates

	Label	X [ft]	Y [ft]	Z [ft]	Detach From Diaphragm
1	N1	0	8	0	
2	N2	8.5	8	0	
3	N3	0	0	0	
4	N4	8.5	0	0	

Node Boundary Conditions

Node Label	X [k/in]	Y [k/in]	Z [k/in]
1 N3	Reaction	Reaction	Reaction
2 N4	Reaction	Reaction	Reaction

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft ³]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A36 L	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
2	A572Grade50 CT	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
3	A992 W	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
4	A500 42	29000	11154	0.3	0.65	0.49	42	1.3	58	1.1
5	A500_46_TS	29000	11154	0.3	0.65	0.49	46	1.2	58	1.1

Member Primary Data

	Label	I Node	J Node	Section/Shape	Туре	Design List	Material	Design Rule
1	M1	N1	N2	W12X22	Beam	Wide Flange	A992 W	Typical
2	M2	N1	N3	HSS5X5X6	Column	Tube	A500 46 TS	Typical
3	M3	N2	N4	HSS5X5X6	Column	Tube	A500 46 TS	Typical

	_ Node Loads and Enforced Displacements (BLC 5 : EQ)									
	Node Label	L, D, M	Direction	Magnitude [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)]						
1	N1		Х	2.65						

Member Distributed Loads (BLC 1 : Dead)

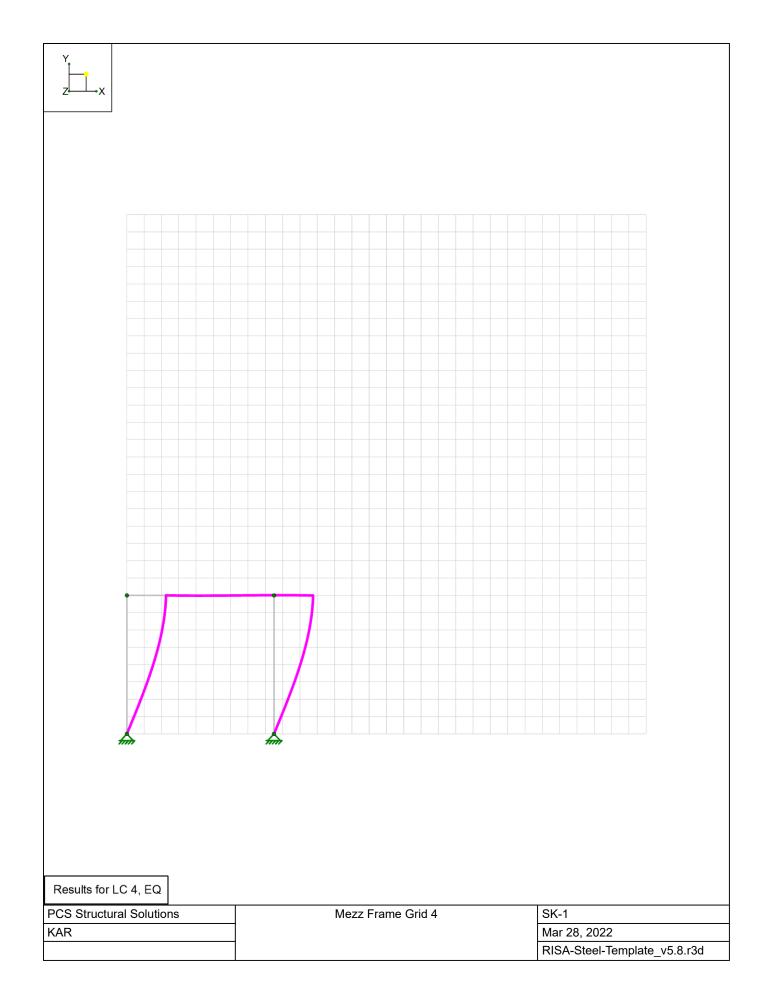
	Member Label	Direction	Start Magnitude [k/ft, F, ksf, k-ft/ft]	End Magnitude [k/ft, F, ksf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
1	M1	Y	-0.05	-0.05	0	%100

Member Distributed Loads (BLC 2 : Live)

Ν	lember Label	Direction	Start Magnitude [k/ft, F, ksf, k-ft/ft]	End Magnitude [k/ft, F, ksf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
1	M1	Y	-0.025	-0.025	0	%100

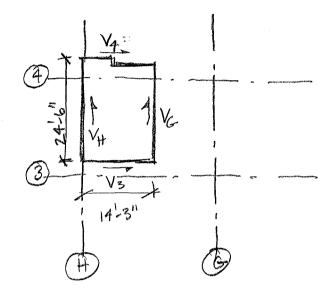
Basic Load Cases

	BLC Description	Category	Y Gravity	Nodal	Distributed
1	Dead	None	-1		1
2	Live	None			1
3	Wind	None			
4	Snow	None			
5	EQ	None		1	
6	Live Rf	None			
7	Wind Pos	None			



Load Combinations

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	Dead	Yes	Y	1	1						
2	Live	Yes	Y	2	1						
3	Service		Y	1	1	2	1				
4	EQ	Yes	Y	5	1						
5	Live Rf	Yes	Y	6	1						
6	Wind Pos	Yes	Y	7	1						
7	1.4D	Yes	Y	1	1.4						
8	1.2D+1.6L+.5Lr	Yes	Y	1	1.2	2	1.6	6	0.5		
9	1.2D+1.6L+.5S	Yes	Y	1	1.2	2	1.6	4	0.5		
10	1.2D+1.6Lr+.5L	Yes	Y	1	1.2	6	1.6	2	0.5		
11	1.2D+1.6Lr+.8W	Yes	Y	1	1.2	6	1.6	3	0.8		
12	1.2D+1.6S+.5L	Yes	Y	1	1.2	4	1.6	2	0.5		
13	1.2D+1.6S+.8W	Yes	Y	1	1.2	4	1.6	3	0.8		
14	1.2D+1.6W+.5L+.5Lr	Yes	Y	1	1.2	3	1.6	2	0.5	6	0.5
15	1.2D+1.6W+.5L+.5S	Yes	Y	1	1.2	3	1.6	2	0.5	4	0.5
16	1.2D+1E+.5L+.2S	Yes	Y	1	1.2	5	1	2	0.5	4	0.2
17	.9D-1.6W	Yes	Y	1	0.9	3	-1.6				
18	.9D-1E	Yes	Y	1	0.9	5	-1				
19	(.9+.2Sds)D+pQE+.5L+0.2S	Yes	Y	1	0.9	5	1	2	0.5	4	0.2
20	(.92Sds)D-pQE	Yes	Y	1	0.9	5	-1				


Envelope AISC 14TH (360-10): LRFD Member Steel Code Checks

MemberShapeCode CheckLoc[ft] LC Shear CheckLoc[ft] Dir LC phi*Pnc [k]phi*Pnt [k]phi*Mn y-y [k-ft]phi*Mn z-z [k-ft]_CbEqn										Cb Eqn				
1	M1	W12X22	0.101	8.5	16	0.03	8.5	y	16	182.372	291.6	13.725	109.875	2.168H1-1b
2	M2	HSS5X5X6	0.299	0	20	0.02	8	y	20	214.443	255.852	36.57	36.57	1.667H1-1b
3	M3	HSS5X5X6	0.3	0	16	0.02	8	y	16	214.443	255.852	36.57	36.57	1.667H1-1b

	Project: MIMU		Job No: 19028		
- PCS	Subject:	Sheet	. Name:		
Structural Solutions	Originating Office: Seattle	🗌 Tacoma 🛄 Portland	Date: 3/13/22		

MEZZANINE LATERAL CALCS

BE ON STEEL MISC W2 FRMG MISC D = 55pst + 15psf + 5psf L= 40psf

$$V = .204(20.2)$$

= 5.3 K

 $C_{S} = .184$ $R_{IMF} = 4.5$ $R_{SW} = 5$ $C_{S} = .184(3.5)$ = .204

$$V_{4} = V_{3} = V_{H} = V_{G} = \frac{5.3}{2} = \frac{2.65 \text{ k}}{2.65 \text{ k}}$$

$$V_{-} = \frac{1}{2} + \delta_{xe} = 0.8^{"} \quad \text{cHECK DRIFT}$$

$$(SEE RISA \\ OLIPUT) \qquad \Delta_{i} = \frac{Ca \delta_{xe}}{Ie} = \frac{3(0.0)}{1.0} = 2.4^{"}$$

$$\Delta_{i} = \frac{OLSAx}{Ie} = \frac{OLS(0)}{1.0} = 2.4^{"}$$

$$\Delta_{i} = \frac{OLSAx}{Ie} = \frac{OLS(0)}{1.0} = 2.5^{"}$$

$$\Delta_{i} = 2.5^{"}$$

1

	Project:		Job No:
	Subject:	Sheet	Name:
Structural Solutions	Originating Office: Seattle	Facoma 🗌 Portland	Date:

aperte cons $P_{\rm D} = .5 K$ $P_{\rm L} = 0.1 K$ PE= 2,5K (SEE RISA) $P_{u} = (1.2 + .2 S_{DS}) D + E + .5 L$ Sps = .92 = [1,2+.2(.92)].5+2.5+.5(.1)= 3.2kCHERK HSS5×5×1/2_ K=1.0 1=8,17f+ r=1.82 in $\frac{1}{2} = \frac{1.0(8.17)(12)}{10} = 53.7 < 4.71\sqrt{\frac{29000}{10}} = 4.71\sqrt{\frac{29000}{46}} = 118.3$ For = [.658 (Fe)] Fy Fy= 46ksi Fz= T2E (H)2 = 99,2 KSi $= \left[\frac{46}{46} \right] (46) = 38.0 \text{ ksi}$ &Ph= ØFcr Ag Ag = 7.88 in2 = .9(38)(7.88) = 269 K > Pu

	Project: <u>MIM</u>	Job No: 19029		
	Subject:		Sheet	Name:
Structural Solutions	Originating Office:	Seattle	Tacoma Por	land Date: 3/13/22

ME AT MEZZANINE

1

BEAMS GRID @

 $M_D = 0.6k-ft$ $M_L = 0.2 k-ft$ $M_E = 10.6 k-ft$

$$M_{H} = (1.2 + .25) D + E + .5L = [1.2 + 2(.92)] .6 + 10.6 + .5(.2) = 11.5 K - f_{+}$$

	Project: MINU	- Job No: 19028		
- PCS	Subject:	Sheet	_ Name:	
Structural Solutions	Originating Office: 🗌 Seattle	🗌 Tacoma 🔲 Portland	Date: 3/13/72	

MFAT MEZZANINE

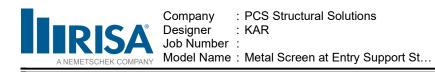
)

CHECK WELDS:

WEDSRE, t=0.25in $F_{\text{NW}} = 0.6F_{\text{BXX}}(1+:S_{\sin}^{1.5}0)$ $\mathcal{D} = .75$ $F_{\text{EXX}} = 70 \text{ kgi}$ = .6(70)(1+.5) = 63 ksiQF. = Ø(.6)70 = .75(16)(70) = 31.5 ksi lt= 5" 14"=h | | | | M=11.5k-f+ Ru = 9.6K/in $R_{n} = \frac{11.5(12)}{14} = 9.6 \text{ k}$ a= .707 t = ,707 (.25) = , 17.7 in $R_{1} = (\frac{P_{1}}{2})a = 9.6(.177) = 1.7 K_{1}$ ØRn = OFum Ann = .75(31.5)(.177)(5) = 20.9 K > Ru :. OK

	Project: <u>HIMV</u>	_ Job No:	
- PCS	Subject:	Sheet	_ Name:
Structural Solutions	Originating Office: 🗌 Se	eattle 🔲 Tacoma 🔲 Portland	Date: 3/14/22

MEZZANINES


,

)

1 1

$$F_p = .45_{05} \text{ Lewpx (MAX)}$$

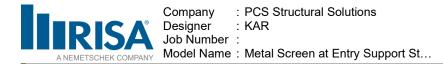
= .4(.92)(1.2)(26.2)=9.6K

S2025 LEVEL 2 CONCRETE FRAMING PLAN

Node Coordinates

	Label	X [ft]	Y [ft]	Z [ft]	Detach From Diaphragm
1	N1	0	0	0	
2	N2	5	0	0	
3	N3	10	0	0	
4	N4	15	0	0	
5	N5	20	0	0	
6	N6	25	0	0	
7	N7	0	11	0	
8	N8	5	11	0	
9	N9	10	11	0	
10	N10	15	11	0	
11	N11	20	11	0	
12	N12	25	11	0	
13	N13	0	0	-1.5	
14	N14	25	0	-1.5	

Node Boundary Conditions


	Node Label	X [k/in]	Y [k/in]	Z [k/in]
1	N7	Reaction	Reaction	Reaction
2	N8	Reaction	Reaction	Reaction
3	N9	Reaction	Reaction	Reaction
4	N10	Reaction	Reaction	Reaction
5	N11	Reaction	Reaction	Reaction
6	N12	Reaction	Reaction	Reaction
7	N13	Reaction	Reaction	Reaction
8	N14	Reaction	Reaction	Reaction

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft³]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A36 L	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
2	A572Grade50 CT	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
3	A992 W	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
4	A500 42	29000	11154	0.3	0.65	0.49	42	1.3	58	1.1
5	A500_46_TS	29000	11154	0.3	0.65	0.49	46	1.2	58	1.1

Member Primary Data

	Label	I Node	J Node	Section/Shape	Туре	Design List	Material	Design Rule
1	M1	N1	N2	HSS7X5X4	Column	Tube	A500 46 TS	Typical
2	M2	N2	N3	HSS7X5X4	Column	Tube	A500 46 TS	Typical
3	M3	N3	N4	HSS7X5X4	Column	Tube	A500 46 TS	Typical
4	M4	N4	N5	HSS7X5X4	Column	Tube	A500 46 TS	Typical
5	M5	N5	N6	HSS7X5X4	Column	Tube	A500 46 TS	Typical
6	M6	N1	N7	HSS4X4X4	Column	Tube	A500 46 TS	Typical
7	M7	N2	N8	HSS4X4X4	Column	Tube	A500 46 TS	Typical
8	M8	N3	N9	HSS4X4X4	Column	Tube	A500 46 TS	Typical
9	M9	N4	N10	HSS4X4X4	Column	Tube	A500 46 TS	Typical
10	M10	N5	N11	HSS4X4X4	Column	Tube	A500 46 TS	Typical
11	M11	N6	N12	HSS4X4X4	Column	Tube	A500 46 TS	Typical
12	M12	N1	N13	HSS5X5X4	Column	Tube	A500 46 TS	Typical
13	M13	N6	N14	HSS5X5X4	Column	Tube	A500_46_TS	Typical

Node Loads and Enforced Displacements (BLC 5 : EQ) Node Label L, D, M Direction Magnitude [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)] 1 N1 L X 250

Member Distributed Loads

No Data to Print ...

Basic Load Cases

	BLC Description	Category	Y Gravity	Nodal	Surface(Plate/Wall)
1	Dead	None	-1		
2	Live	None			
3	Wind	None			1
4	Snow	None			
5	EQ	None		1	
6	Live Rf	None			
7	Wind Pos	None			

Load Combinations

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	Dead	Yes	Y	1	1						
2	Live	Yes	Y	2	1						
3	Service		Y	1	1	2	1				
4	EQ	Yes	Y	5	1						
5	Live Rf	Yes	Y	6	1						
6	Wind Pos	Yes	Y	7	1						
7	1.4D	Yes	Y	1	1.4						
8	1.2D+1.6L+.5Lr	Yes	Y	1	1.2	2	1.6	6	0.5		
9	1.2D+1.6L+.5S	Yes	Y	1	1.2	2	1.6	4	0.5		
10	1.2D+1.6Lr+.5L	Yes	Y	1	1.2	6	1.6	2	0.5		
11	1.2D+1.6Lr+.8W	Yes	Y	1	1.2	6	1.6	3	0.8		
12	1.2D+1.6S+.5L	Yes	Y	1	1.2	4	1.6	2	0.5		
13	1.2D+1.6S+.8W	Yes	Y	1	1.2	4	1.6	3	0.8		
14	1.2D+1.6W+.5L+.5Lr	Yes	Y	1	1.2	3	1.6	2	0.5	6	0.5
15	1.2D+1.6W+.5L+.5S	Yes	Y	1	1.2	3	1.6	2	0.5	4	0.5
16	1.2D+1E+.5L+.2S	Yes	Y	1	1.2	5	1	2	0.5	4	0.2
17	.9D-1.6W	Yes	Y	1	0.9	3	-1.6				
18	.9D-1E	Yes	Y	1	0.9	5	-1				
19	(.9+.2Sds)D+pQE+.5L+0.2S	Yes	Y	1	0.9	5	1	2	0.5	4	0.2
20	(.92Sds)D-pQE	Yes	Y	1	0.9	5	-1				

Envelope AISC 14TH (360-10): LRFD Member Steel Code Checks

Member Shape Code CheckLoc[ft]LCShear CheckLoc[ft]DirLCphi*Pnc [k]phi*Pnt [k]phi*Mn y-y [k-ft]phi*Mn z-z [k-ft] Cb Eqn] Cb Eqn	
1	M1	HSS7X5X4	0.155	5	16	0.006	0	y	20	204.39	216.936	33.914	42.78	1.696H1-1b*
2	M2	HSS7X5X4	0.155	5	16	0.005	5	y	20	204.39	216.936	33.914	42.78	2.246H1-1b*
3	M3	HSS7X5X4	0.155	5	16	0.005	5	y	16	204.39	216.936	33.914	42.78	1.588H1-1b*
4	M4	HSS7X5X4	0.155	5	16	0.012	0	y	16	204.39	216.936	33.914	42.78	1.92 H1-1b*
5	M5	HSS7X5X4	0.155	5	16	0.018	5	y	16	204.39	216.936	33.914	42.78	1.425H1-1b*
6	M6	HSS4X4X4	0.154	0	20	0.001	11	y	16	84.082	139.518	16.181	16.181	1.668H1-1b*
7	M7	HSS4X4X4	0.014	0	20	0	11	y	20	84.082	139.518	16.181	16.181	1.667 H1-1b
8	M8	HSS4X4X4	0.019	0	4	0	11	y	16	84.082	139.518	16.181	16.181	1.667 H1-1b
9	M9	HSS4X4X4	0.02	0	16	0	11	z	4	84.082	139.518	16.181	16.181	1.667 H1-1b
10	M10	HSS4X4X4	0.016	0	4	0	11	z	4	84.082	139.518	16.181	16.181	1.667 H1-1b

Envelope AISC 14TH (360-10): LRFD Member Steel Code Checks (Continued)

	Member	r Shape	Code Check	Loc[ft]	ILC	Shear Check	Loc[ft]	Dir	LC	phi*Pnc [k]	phi*Pnt [k]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-ft	Cb	Eqn
11	M11	HSS4X4X4	0.087	0	16	0	11	y	16	84.082	139.518	16.181	16.181	1.666	H1-1b*
12	M12	HSS5X5X4	0.599	0	20	0.201	1.5	z	20	176.98	178.02	26.255	26.255	1.678	H1-1b
13	M13	HSS5X5X4	0.555	0	4	0.184	1.5	z	4	176.98	178.02	26.255	26.255	1.667	H1-1b

5203 - LEVEL 3 FRAMING PLAN

MIMU Job No: ____9 Project: . Name: Subject: Sheet . Originating Office: X Seattle Tacoma Portland Date: _ **Structural** Solutions Check Diaphragn w/ Re-Entrant Straps: Highest Strap Shear = 7.72KK Re-entrant Corner-@ Grid D/4.5+ Diaphragm Copacity = 240 plf (ASD) 7.72 K.1000 240 plf -= 32' Strap End Length Re-entrant Corner @ Grich D/8.2, I/3,2 = 4.31 K 4.31.1000 18' Strap End Length -240 plf 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 Seattle www.pcs-structural.com

1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797 Tacoma 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746 Portland

S204 - LEVEL 4 FRAMING PLAN

MINU Job No: ___ Project: . Name: Subject: _ Sheet Originating Office: X Seattle Tacoma Portland Date: Structural Solutions Level 4 Loft Lateral Design : $S_{DS} = 0.92$ Loft Area = 238 sf Weight = (238 sf)(25 PSF + 10 PSF) Walls Flour Wp = 8330 lbs $F_{p} = \frac{0.4a_{p}S_{DS}W_{p}}{\left(\frac{R_{p}}{T_{p}}\right)} \left(1 + 2\frac{Z}{h}\right) ASCE 13.3-1$ ap= 2.5, Rp= 3.5, Ip=1.0, Z=19.5', h= 28.5' $F_{p} = \frac{0.4(2.5)(0.92)(8330)}{\binom{3.5}{1}} \left(1 + 2\binom{18.5}{28.5}\right)$ DP ~ 60% · Wp ASD-Fp = 5032 lbs Loft S.W. $V_{\text{Stair S.W.}} = \frac{5032}{2} = 2516 \times 0.7$ Vstair S.W. = 1761 = 121.5 plf Stair S.W. Add to L4 in excel ? 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 Seattle www.pcs-structural.cor

1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797 Tacoma 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746 Portland

MINU Job No: ___ Project: _ ofts Subject: _ Sheet Name: Originating Office: X Seattle Tacoma Portland Date: **Structural** Solutions $V_{Loff S,W} = \frac{1761}{7.5'+4.67'} = 145 plf V$ Wall Type A DK Add to 13 J Excel Diaphragm positively attached at 2 sides to additionally brace loft - see 18+19 On 5510 Level 4M Loft Design: Loft Area = 167 sf Weight = (167sf)(25 PSF + 10 PSF) Flour Walls Wp = 5845 lbs $F_{p} = \frac{0.4a_{p}S_{DS}W_{p}}{\left(\frac{R_{p}}{T_{p}}\right)} \left(1 + 2\frac{Z}{h}\right) ASCE 13.3-1$ ap= 2.5, Rp= 3.5, Fp=1.0, Z=18.5', h=28.5' Seattle | 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 www.pcs-structural.com

 Tacoma
 1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797

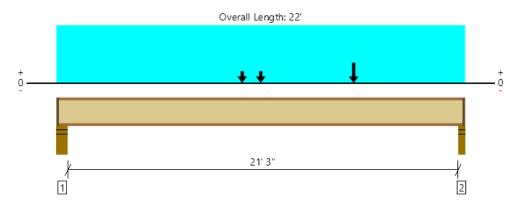
 Portland
 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746

MINU Job No: ___ Project: _ Name: Subject: Sheet 3, Originating Office: Seattle Tacoma Portland Date: **Structural** Solutions $F_{p} = \frac{0.4(2.5)(0.92)(5845)}{\binom{3.5}{1}} \left(1 + 2\binom{18.5}{28.5}\right)$ $\left(\frac{3.5}{1}\right) \qquad \text{Very Conservative}$ Fp = 3531 lbs OP = 60% · WP Demising Shear Wall Loft S.W. $V_{\text{Demissing S,W}} = \frac{3531}{2} \times 0.7 = 1236 \#$ $V_{\text{Demissing S.W.}} = \frac{1236}{30.5!} = 41 \text{ plf}$ - Add to Excel Calc VLOFT S.W. - <u>1236</u> - 52 plf V 9.5'+14.5' - 52 plf V Wall Type A OK Diaphrogen Positively Add to 13 Excel Attached - see 16+18 Calc 5510 On

 Seattle
 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076

 Tacoma
 1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797

 Portland
 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746


www.pcs-structural.com

MEMBER REPORT

Level, J2 @ Lofts 1 piece(s) 11 7/8" TJI ® 560 @ 12" OC

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	978 @ 21' 9 1/2"	1396 (2.25")	Passed (70%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	965 @ 21' 8 1/2"	2050	Passed (47%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5392 @ 11'	9500	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.350 @ 11' 2 13/16"	0.535	Passed (L/734)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.706 @ 11' 2 3/4"	1.071	Passed (L/364)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	45	45	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling, Pour Flooring Overlay.

	Bearing Length		Loads to Supports (Ibs)				
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - DF	5.50"	4.25"	1.75"	413	473	886	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.75"	467	517	984	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	7' 6" o/c			
Bottom Edge (Lu)	21' 10" o/c			
The initial and and an initial Maximum Allowable burning addition				

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 22'	12"	25.0	40.0	Default Load
2 - Point (PLF)	16'	12"	150.0	110.0	
3 - Point (Ib)	10'	N/A	90	-	
4 - Point (Ib)	11'	N/A	90	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Alex Davis PCS Structural Solutions (206) 292-5076 adavis@pcs-structural.com Job Notes

S250 - DETENTION VAULT DETAILS

Mercer Island Apts Sump Grate Conn 12/12/2022

1

Profis Anchor 2.7.5

10

www.hilti.us

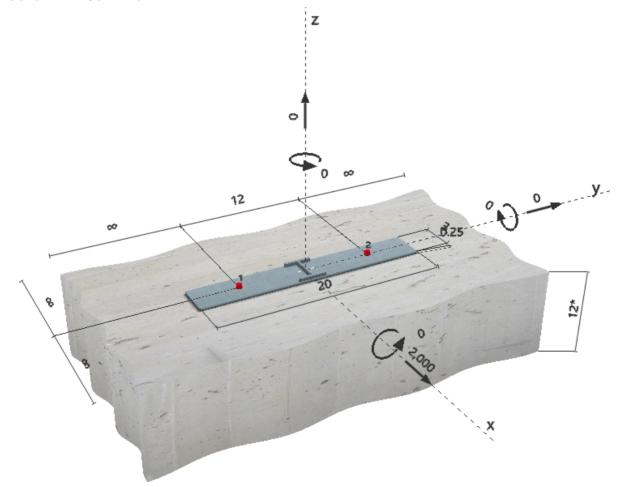
Company: Specifier: Address: Phone I Fax: E-Mail:

Specifier's comments:

I

1 Input data

Anchor type and diameter:	Kwik Bolt TZ - SS 316 1/2 (3 1/4)
Effective embedment depth:	h _{ef,act} = 3.250 in., h _{nom} = 3.625 in.
Material:	AISI 316
Evaluation Service Report:	ESR-1917 SAFESET
Issued I Valid:	5/1/2017 5/1/2019
Proof:	Design method ACI 318-14 / Mech.
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.250 in.
Anchor plate:	$I_x \times I_y \times t = 3.000$ in. x 20.000 in. x 0.250 in.; (Recommended plate thickness: not calculated
Profile:	S shape (AISC); (L x W x T x FT) = 3.000 in. x 2.330 in. x 0.170 in. x 0.260 in.
Base material:	cracked concrete, 4000, f _c ' = 4000 psi; h = 12.000 in.
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar


Page:

Date:

Project:

Sub-Project I Pos. No.:

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

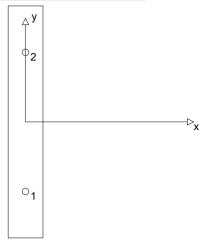
www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

Page: Project: Sub-Project I Pos. No.: Date:

2 Mercer Island Apts Sump Grate Conn 12/12/2022

2 Load case/Resulting anchor forces


I

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0	1000	1000	0
2	0	1000	1000	0
max. concrete co resulting tension	mpressive strain: mpressive stress: force in (x/y)=(0.00 ssion force in (x/y)=	- 0/0.000): C	[‰] [psi]) [lb]) [lb]	

3 Tension load

	Load N _{ua} [lb]	Capacity 🖕 N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	N/A	N/A	N/A	N/A

* anchor having the highest loading **anchor group (anchors in tension)

www.hilti.usProfis Anchor 2.7.5Company:Page:3Specifier:Project:Mercer Island AptsAddress:Sub-Project I Pos. No.:Sump Grate ConnPhone I Fax:IDate:12/12/2022E-Mail:III

4 Shear load

	Load V _{ua} [lb]	Capacity _∳ V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	1000	4472	23	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	2000	17639	12	OK
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-1917
ϕV_{stee}	el ≥ V _{ua}	ACI 318-14 Table 17.3.1.1

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
0.10	115000
Calculations	

Calculations

V _{sa} [lb]	
6880	

Results

_

V _{sa} [lb]	∲ steel	φ V _{sa} [lb]	V _{ua} [lb]
6880	0.650	4472	1000

4.2 Pryout Strength

$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-14 Eq. (17.5.3.1b)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-14 Table 17.3.1.1
A _{Nc} see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
$A_{\rm Nc0}$ = 9 $h_{\rm ef}^2$	ACI 318-14 Eq. (17.4.2.1c)
$ \psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 \dot{e_N}}{3 h_{\text{ef}}}}\right) \le 1.0 $	ACI 318-14 Eq. (17.4.2.4)
$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,\min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\Psi_{cp,N} = MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.7b)
$N_{\rm b} = k_{\rm c} \lambda_{\rm a} \sqrt{f_{\rm c}} \tilde{N}_{\rm ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

k	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]		
2	3.250	0.000	0.000	00		
Ψ c,N	c _{ac} [in.]	k _c	λa	f _c [psi]		
1.000	6.000	17	1.000	4000		
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
190.13	95.06	1.000	1.000	1.000	1.000	6299
Results						

www.hilti.us

Company:	Page:	4
Specifier:	Project:	Mercer Island Apts
Address:	Sub-Project I Pos. No.:	Sump Grate Conn
Phone I Fax:	Date:	12/12/2022
E-Mail:		

5 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This
 means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be
 sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate
 thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption
 is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for
 plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-14, Section 17.8.1.

Fastening meets the design criteria!

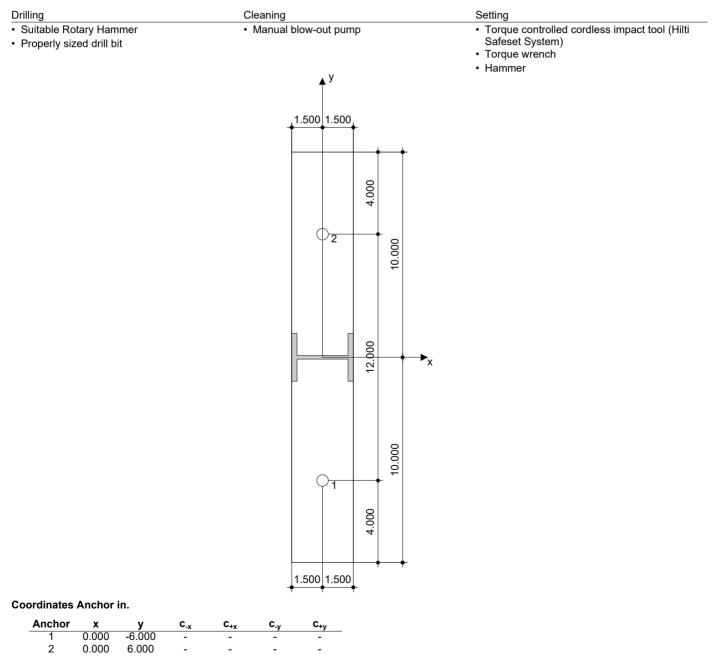
Profis	Anchor 2.7.5

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

Page: Project: Sub-Project I Pos. No.: Date:

5 Mercer Island Apts Sump Grate Conn 12/12/2022


6 Installation data

Anchor plate, steel: -Anchor typeProfile: S shape (AISC); $3.000 \times 2.330 \times 0.170 \times 0.260$ in.Installation inHole diameter in the fixture: $d_f = 0.563$ in.Hole diameterPlate thickness (input): 0.250 in.Hole depth inRecommended plate thickness: not calculatedMinimum thDrilling method: Hammer drilledCleaning: Manual cleaning of the drilled hole according to instructions for use is required.

I

Anchor type and diameter: Kwik Bolt TZ - SS 316 1/2 (3 1/4) Installation torque: 480.001 in.lb Hole diameter in the base material: 0.500 in. Hole depth in the base material: 4.000 in. Minimum thickness of the base material: 8.000 in.

6.1 Recommended accessories

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

П		

www.hilti.us			Profis Anchor 2.7.
Company:		Page:	6
Specifier:		Project:	Mercer Island Apts
Address:		Sub-Project I Pos. No.:	Sump Grate Conn
Phone I Fax:		Date:	12/12/2022
E-Mail:	·		

7 Remarks; Your Cooperation Duties

.

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
 by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or
 programs, arising from a culpable breach of duty by you.

S420 TYPICAL POST-TENSION SLAB DETAILS

Project: MIMU		Job No:
Subject:	Sheet	Name:
Originating Office: Seattle	Tacoma Portland	Date: 3/21/22
	Subject:	,

	ncret									SI / l restr				, p C				5.11		a11	
See	e spe	ecific	c tex	t no	ted	bel	ow:														
AS	TM E	119	•	TAR	IE V3	1.0	netruc	tion C	lseeifi	cation, I	Restra	ined :	and I	Inres	traine	d.					
(i (i Inte	() Open- () Open- () Concr rior span () Open-	web stee ete stabi is of mul web stee	s, precas tiple bays el joists, s	orted en r stoel b t units, c steel bes	d spans beams, s or metal	of mu suppor deckir	ltiple bay ting con ng decking,	ys; ^A crete sl suppor	ab, pred	ast units, tinuous c etal decki	or met	tal deci					Series			unrest unrest restrai unrest	ined traine
() II.Steel () (2 roof s	 A) Preca framing: framing: f) Steel All typ ystem is 	st concre beams v les of ca secured	velded, ri st-in-plac I to the fra	e the pot veted, o e floor a aming m	tential th r bolted and roof tembers	to the system	framing ns (such	memb as be	ers am-and-	vy adjacer slabs, fla nembers	t slabs,	pan jo	ists, a						or or	restrai restrai restrai restrai	ined ined ined
therm II.Conci	al expan ete fram	sion of th ing: secure	he floor o	er roof sy	ystem is e framin	s resist	ed by th	e frami	ng syste	abs, flat :	adjoinir	ng flooi	r or roo	of cons	structio	an [®]	\sim	\sim	\sim	restra	
syster	n is cast	with the	framino	membe	rs		0.0402.0000.0					an jois	ta, dill	1 wenne	a sidus	a) wind				reaud	med
condi	tion III (1)	122012 34	-						ts resultir										restra	
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	ts resultir nembers lie adjoinii	are sec	cured to	such	syster	ns and				ermal	restrai	ined
condi (expar V.Wood	tion III (1 f) All type iston of the) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	303	ined
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	restrai	ined
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	restrai	ined
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	restrai	ined
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	restrai	ined
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	restrai	ined
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	restrai	ined
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	restrai	ined
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	restrai	ined
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	restrai	ined
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	restrai	ined
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	restrai	ined
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	restrai	ined
condi (expar V.Wood	tion III (1 4) All type iston of the construe) les of pri he floor	efabricate	d floor	or roof s	system	s where	the str	uctural r	nembers	are sec	cured to	such	syster	ns and				ermal	restrai	ined

APPENDIX C

Nonmandatory Guide for Determining Conditions of Restraint for Floor and Roof Assemblies and for Individual Beams

C1.1 Revisions adopted in 1970 introduced the concept of fire endurance classifications based on two conditions of support: restrained and unrestrained. As a result, specimens are fire tested to derive these two classifications.

C1.2 In fire tests, a restrained condition, as used in this standard, is one in which expansion at the supports of a load-carrying element resulting from the effects of the fire is resisted by forces external to the element. An unrestrained condition is one in which the load-carrying element is free to expand and rotate at its supports.

C1.3 This guide is based on knowledge currently available and classifies all constructions as either restrained or unrestrained. This classification will enable the architect, engineer, or building official to correlate the fire endurance classification, based on conditions of restraint, with the construction type under consideration. While it has been shown that certain conditions of restraint will improve fire endurance, methodologies for establishing the presence of sufficient restraint in actual constructions have not been standardized.

C1.4 For the purpose of this Guide, restraint in buildings is defined as follows:

Floor and roof assemblies and individual beams in buildings shall be considered restrained when the surrounding or supporting structure is capable of resisting substantial thermal expansion throughout the range of anticipated elevated temperatures. Constructions not complying with this definition are assumed to be free to rotate and expand and shall therefore be considered as unrestrained.

C1.5 The definition in C1.4 requires the exercise of engineering judgment to determine what constitutes restraint to "substantial thermal expansion." Restraint may be provided by the lateral stiffness of supports for floor and roof assemblies and intermediate beams forming part of the assembly. In order to develop restraint, connections must adequately transfer thermal thrusts to such supports. The rigidity of adjoining panels or structures should be considered in assessing the capability of a structure to resist thermal expansion. Continuity, such as that occurring in beams acting continuously over more than two supports, will induce rotational restraint which will usually add to the fire resistance of structural members. In Table C1.1 only the common types of constructions are listed. Having these examples in mind, as well as the philosophy expressed in the preamble, the user should be able to rationalize the less common types of construction.

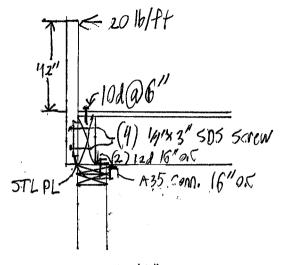
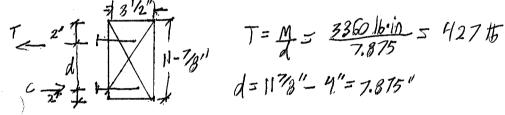

C1.6 The foregoing methods of determining the presence or absence of restraint, according to the type and detail of construction, represent only one procedure for establishing dual fire endurance classifications. This procedure alone does not represent all restrained and unrestrained construction conditions.

Table C1.1 Considerations of restraint for common construction


	Ι.	Wall	Bearing:
		A.	Single span and simply supported end spans of multiple bays. ^a
			1. Open-web steel joists or steel beams supporting concrete slab, precast units, or metal decking
			Unrestrained
			2. Concrete slabs, precast units, or metal decking
		В.	Interior spans of multiple bays.
			1. Open-web steel joists, steel beams, or metal decking supporting continuous concrete slab Restrained
			2. Open-web steel joists or steel beams, supporting precast units or metal decking Unrestrained
			3. Cast-in-place concrete slab systems
			4. Precast concrete where the potential thermal expansion is resisted by adjacent construction ^b Restrained
	II.	Steel	Framing:
		A.	Steel beams welded, riveted, or bolted to the framing members
		В.	All types of cast-in-place floor and roof systems (such as beam-and-slabs, flat slabs, pan joists, and waffle slabs) where the floor or roof system is secured to the framing members
		C.	All types of prefabricated floor or roof systems where the structural members are secured to the framing members and the potential thermal expansion of the floor or roof system is resisted by the framing system or the adjoining floor or roof construction ^b
	III.	Conc	rete Framing:
	\sim	A	Beams soculely lastened to the framing prendbals.
Ų		В.	All types of cast-in-place floor or roof systems, such as beam-and-slabs, flat slabs, pan joists, and waffle slabs,
Q			where the floor system is cast with the framing members
	\mathcal{L}		Anteriorand exterior sparse of process systems with cast-in-place joints resulting in restraint equivalent to that which
			would exist in Condition III, item ARestrained
		D.	All types of prefabricated floor or roof systems where the structural members are secured to such systems and the potential thermal expansion of the floor or roof system is resisted by the framing system or the adjoining floor or roof construction ^b
	IV.	Wood	I Construction:
		Α.	All types
			roof systems can be considered restrained if they are tied into walls with or without tie beams, and the walls are Ind detailed to resist thermal thrust from the floor or roof system.
	^b For	examp	ole, resistance to potential thermal expansion is considered to be achieved if:
		1.	Continuous structural concrete topping is used.
		2.	The space between the ends of precast units or between the ends of units and the vertical face of supports is filled with concrete or mortar.
		3.	The space between the ends of precast units and the vertical faces of supports or between the ends of solid or hollow core slab units does not exceed 0.25 percent of the length for normal-weight concrete members or 0.1 percent of the length for structural light-weight concrete members.

5510 - WOOD I-JOIST FLOOR

Project: Mercer Island Apartments Subject: GLARA Mil 31 519022 Structural Solutions Originating Office: 🗋 Seattle 🗌 Tacoma 🗌 Portland

* 20 lb/ft from IBC 1607.8.1 Area Is not accessible to Public=>guard rail load can be reduced
48" Tributary to each guard post 20¹/₄₁, 48: 1' = 80 lb
M = B0 lb, 42" = 3360 tb. in at STL PL

From 55T wood connections manual SD525.300 '4x3" screws W=345 lb (2" threaded length) (DF formember) $W'=W\cdot c_0 \cdot (m \cdot C_t \cdot Ceg \cdot C_{tn} = 345$ lb /ascrew $W \cdot C_0 = 1.0$ (Live load, TA 2.3.2 NDS) $C_m = 1.0$ (Assume service condidity, ND5 11.3.3) $C_t = 1.0$ (Not exposed to sustained high Ceg = 1.0 (Not loaded in end grain) temp. Assumed NDS 11.3.4) $C_{tn} = 1.0$ (Not a toenail conn.) $W_{,2} \le crews = 3.45$ lb /screw; 2 = 690 lb = 427 lb demand V

 Seattle
 1011 Western Avenue, Suite 810 • Seattle, WA 98104 • tel: 206.292.5076

 Tacoma
 1250 Pacific Avenue, Suite 701 • Tacoma, WA 98402 • tel: 253.383.2797

 Portland
 101 SW Main Street, Suite 280 • Portland, OR 97204 • tel: 503.232.3746

Project: Mercer Island Apartments Subject: Guard Rai Sheet Originating Office: 🔪 Seattle 🗌 Tacoma 🗌 Portland Structural Solutions Date: check shear in diaphram nailing "18" Tributary to each guard post 10d@6" spadng <u>48"</u> = B mils 3/4" thick Diaphram SHT'G 10 d common nails (D=0, 1981) 2= 105 16 (TA 12N NOS) Z'=Z. Co'Cn G'G'CA' Ceg Chi Gn=105 16

$$C_{0, C_{m, G_{1}, C_{e_{3}, C_{m}} = 1.0 (see prev. calc)}$$

 $C_{g=1.0 (D=1/4'', 11.3.6 NDS) G=1.0 (D=1/4'', NDS 12.5.1)$
 $C_{di}=1.0 (Dont use diaphram factor.)$

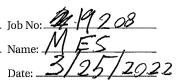
Fotal capacity=Bnails. 10516=840 16> 427 15 demand V

 $Z (12d \text{ common nall, D=0. [48"}) \quad \text{side member I-joist flange=1-1/2"}$ $Z=118 (DF_{X})^{A}TA |2N) \quad Z'=z=11816 \quad \begin{array}{c} 48'' \text{Triby (2)} |2d \text{ noils spaced at 16."} 0.C \\ \hline \\ For each Joist \\ \hline \\ 16''' = 3 \quad 3\cdot 2 \text{ nails perjoist=6 nails} \end{array}$

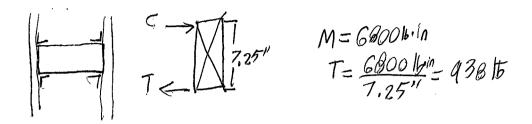
12d nail cap = 6.118/b=708tt A35 connector case. 4 loading spaced at 16" Dic=> 6.A35 connections From sst conn. Table A35 cap. = 590 Hz (Top is restrained to protectagainst 6.5901b=35401b > 427tz 6.5901b=35401b > 427tz

Project: Mercer Island Apt. Subject: ROOT GUAN Vall Sheet Date: 3/25/2022 Originating Office: X Seattle \Box Tacoma \Box Portland Structural Solutions 20015 (1) 3/3' O Lag screws 5'' Longth $d = 7''_{9'} - 3'' = 9,25''$

T= 6800 1611 = 1600 16 For W = 305 16 (TA 12.2 A, DF, G=0.5) W1= W. Cp. Cm. G. (Ceg. Ctn = 305-16/in Co=1.0 (Live, TA 2.3,2 ND5) Cm = 1,0 (Sealed Inside Wall, assume dry cond.) G=1.0 (Assume no sustained high temps) (eg, Stn=1.0 (Not applicable) 3/8"x5" Lag Screws, Threaded length, T-E= 2-25/32" 818 16, 2 5078W5= 1897 16 = Total cap for 2 lag 3051b/in + 2= 25/32"=84816 SCRUS 1697 h > 1600 16:1


T = M $M = 20016 \cdot 2.8' = 566.716ft = 680016in$

Seattle 1011 Western Avenue, Suite 810 · Seattle, WA 98104 · tel: 206.292.5076 Tacoma 1250 Pacific Avenue, Suite 701 · Tacoma, WA 98402 · tel: 253,383.2797 Portland 101 SW Main Street, Suite 280 · Portland, OR 97204 · tel: 503.232.3746


STLP

Project: Mercer Island A Subject: Roof Guardrail Sheet.

Originating Office: Seattle 🗌 Tacoma 🔲 Portland

HGAIO Using (4) 1/4"x 11/2" 505 Screws Cap=50016 For loading 2 connectors = 500 16×2 = 1000 16>938 16 V

5520 - WOOD I-JOIST ROOF

Project: MERCER Island Apt. Job No: 19098 Subject: Wind landing parapet sheet_ Name: <u>M</u> Date: 3/25/2.92 Originating Office: 📉 Seattle 🗌 Tacoma 🔲 Portland Structural Solutions 90 = 32p5ft 15p5f=47p5f Scp.=+1.5 wind ward

 $P_{P}=9_{p}(GCpn)=47_{P5}f. 1.5=70.5 psf$ 9.5' parapet Wall height = 2.5' Trib to parapet wall header 70.5psf. 2.5'=176.3 plf 176.3 lb/ft $M_{u}=353 lb/ft$ $W_{u}=353 t5$

(2) 2×6 $F_b = 700psi (DF+L TA4A NDs Supp.)$ $C_b = 1.6 (TA 2.3.2, wind) (M=1.0) Gealed ioside will, dry)$ $C_b = 1.0 (No sustained high temps) (L = 1.0) (fully laterally supported w/sheathing)$ $C_F = 1.0 (TA 4A NPS Supp.) (Fu = 1.0) (Ioaded Short face)$ $C_i = 1.0 (Not incised C_r = 1.0) & (stud header)$ $F_b = F_b \cdot C_b \cdot C_m \cdot C_b \cdot C_b \cdot C_F = 700 \cdot 1.6 = 1120psi$ $F_b = \frac{353 \cdot 12}{15610^3} = 200psi = 2.240psi$ $f_b = \frac{353 \cdot 12}{2.715610^3} = 200psi = 2.240psi$ $f_s = strongaxis bending$ $Case4 A 35 F_i Joading From SST manual = 650 Ib > 353 Ib /$

Check SCL coli

 $R = 353 \text{ tr} \qquad M_{\text{max}} = 353 \cdot 5 = 1765 / 6 \cdot \text{F} = 2 / 180 / 6 \cdot \text{in}$ $= 353 \cdot 5 = 1765 / 6 \cdot \text{F} = 2 / 180 / 6 \cdot \text{in}$ $= 17' \qquad 2 \cdot 7.56 \text{ in}^3 = 1400 \text{psi} = 47400 \text{psi}}{2720 \text{psi}}$ $= 17' \qquad F_6 = 1700 \text{psi} \text{ for } 2 \times \text{SCL}$ FL=16. [TODOSi= 2720051

H1=R(17+51)=45715

A35 cap. FI Case 9 loading \$65016' 2connectors=>130016cap =45716

		MIMU			Job No: 19028
	Subject:		Sheet		Name: <u>AED</u> Date: <u>12/8/22</u>
Structural Solutions	Originating (Office: Seattle	Tacoma	Portland	Date: 12/8/22
Check Oi	strigge	er Hang	lo o		
Trib. = 2	1 O.C	.,			
		$\langle \mathcal{N} \rangle$			
	1			Ţ	
	Am	A	= / >		
	¥	(l) y	(9)	_X	
P-	1 2	21-04	21-6	l ('l	
- FI			Z2		
		n+Snow	$\overline{\mathcal{A}}$	2	
W (23	PSF)	DL + [30 PSF	=) = z	53 PSF
			•		
()) [17	2 25	53	[2	7 ~
$P_1 = \frac{1}{2}$	$\mathcal{T}(l)$	- (=	2 71	2-2	.5)
	<i>J</i> C	Trib. J.	L.C		
$R_1 = \frac{\mu}{2}$ $R_1 = \frac{\mu}{2}$	-30 =	F x 2'		60 #	
Simpson 1	BUL) $F = (c$	nacion	h = 38	0 ± 1
		HGR			
	LB	HGR	0K		
Seattle 1011 Western Avenue, Suite 8	810 Seattle W/A Q	8104 206 292 5076			www.pcs-structural.com

 Tacoma
 1250 Pacific Avenue, Suite 701
 Tacoma, WA 98402
 253.383.2797

 Portland
 101 SW Main Street, Suite 280
 Portland, OR 97204
 503.232.3746

5600 - WOOD STAIR DETAILS

_____ Job No: <u>19</u>028 Project: MIMU Subject: Stair Details Sheet _____ _ Name: _____A Date: __3/2 Originating Office: Seattle Structural Solutions Stair Details 3 Stringers 3 Spaced @ 12" O.C. WD+WL Â 81-011 Case 13 $\overline{W_{D}}$ =25 PSF × (1') = 25 PLF $W_L = 100 \text{ PSF } \times (11) = 100 \text{ PLF}$ $M_{\text{max}} = \frac{WL^2}{8} = 1000 \text{ FT-lbs} = 12,000 \text{ in-lbs}$ Vmax - wel - 500 lbs Case 2° Mmax = Pl - 600 ft-lbs P = 300 #Vmax = 150 lbs 00 Case 1 Controls

 Seattle
 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076

 Tacoma
 1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797

 Portland
 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746

www.pcs-structural.com

Project: MIMU 14028 Job No: _ Subject: Stair Details Sheet ____ Name: Date: 3 Originating Office: X Seattle Tacoma Portland **Structural** Solutions 2×12 SCL Stringer w/ 2×6 strongback F6 = 1700 PSI All adjustment factors - 1.0 2x12 SU Stringer is notched, so analyze (2) 2×6 SCL Members as 5 - 2×7.56 - 15.12 in3 $F_{b} = \frac{12,000}{15.12} = 794 PSI < 1700 PSI$ V OKCheck Simpson Hanger 8 HUC26-2 Capacity = 1,190# >500# \sqrt{OK} Check Landing BM3 P1 = 500 # 1 OK

A

X

41-04

 Seattle
 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076

 Tacoma
 1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797

 Portland
 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746

www.pcs-structural.com

SEE FORTE

Project: MIMU Job No: //2 Subject: Stair Details Sheet Name: //2 Originating Office: Seattle Tacoma Portland Date: 3/2 Job No: 19028 **Structural** Solutions Check Center BMS P1 = 1000# 1P1 A X 4'-04 V OK - SEE FORTE Chectz Conc. Ledger's (4) 5/8¹¹ Ø A.B.'s 500 # Shear to bolt 25/8 \$ A.B. OK / 2000 # Tension to bolt } Per Hilti Seattle | 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076

Stairs

Level			
Member Name	Results	Current Solution	Comments
Typ. Landing BM	Passed	1 piece(s) 4 x 10 DF No.2	
Typ Center BM	Passed	1 piece(s) 4 x 10 DF No.2	

ForteWEB Software Operator
Alex Davis PCS Structural Solutions (206) 292-5076 adavis@pcs-structural.com

Job Notes



5/17/2021 9:31:52 PM UTC ForteWEB v3.2 File Name: Stairs

MEMBER REPORT

Level, Typ. Landing BM 1 piece(s) 4 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	782 @ 2"	3828 (1.75")	Passed (20%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	775 @ 1' 3/4"	3885	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1049 @ 2' 3"	4492	Passed (23%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 2' 3 1/2"	0.106	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.009 @ 2' 3 1/2"	0.213	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - DF	3.50"	1.75"	1.50"	171	612	783	1 3/4" Rim Board
2 - Stud wall - DF	3.50"	1.75"	1.50"	165	588	753	1 3/4" Rim Board
 Rim Board is assumed to carry all loads applie 	d directly abo	ve it, hvnassi	na the membe	er heina desia	ined.		

ned to carry all loads applied directly above it, bypassing the member being desi

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 4" o/c	
Bottom Edge (Lu)	4' 4" o/c	

•Maximum allowable bracing intervals based on applied load.

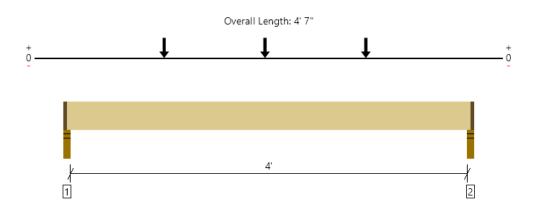
Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	1 3/4" to 4' 5 1/4"	N/A	8.2		
1 - Point (Ib)	1' 1 1/2" (Front)	N/A	100	400	Default Load
2 - Point (Ib)	2' 3" (Front)	N/A	100	400	Default Load
3 - Point (lb)	3' 4 1/2" (Front)	N/A	100	400	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Alex Davis	
PCS Structural Solutions	
(206) 292-5076	
adavis@pcs-structural.com	



MEMBER REPORT

Level, Typ Center BM 1 piece(s) 4 x 10 DF No.2

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1547 @ 2"	3828 (1.75")	Passed (40%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1539 @ 1' 3/4"	3885	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2080 @ 2' 3"	4492	Passed (46%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.014 @ 2' 3 1/2"	0.106	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.017 @ 2' 3 1/2"	0.213	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - DF	3.50"	1.75"	1.50"	323	1224	1547	1 3/4" Rim Board
2 - Stud wall - DF	3.50"	1.75"	1.50"	312	1176	1488	1 3/4" Rim Board
Rim Board is assumed to carry all loads applie	d directly abo	ve it, hvnassi	na the membe	er beina desia	ined.		

med to carry all loads applied directly above it, bypassing the member being desi

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	4' 4" o/c				
Bottom Edge (Lu)	4' 4" o/c				

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	1 3/4" to 4' 5 1/4"	N/A	8.2		
1 - Point (Ib)	1' 1 1/2" (Top)	N/A	200	800	Default Load
2 - Point (Ib)	2' 3" (Top)	N/A	200	800	Default Load
3 - Point (lb)	3' 4 1/2" (Top)	N/A	200	800	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

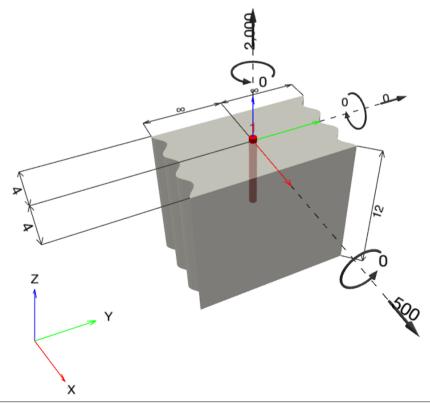
ForteWEB Software Operator	Job Notes
Alex Davis	
PCS Structural Solutions	
(206) 292-5076	
adavis@pcs-structural.com	

www.	hilti	.com
------	-------	------

Company: Address: Phone I Fax: Design: Fastening point:

| Concrete - May 17, 2021 Page: Specifier: E-Mail: Date:

5/17/2021


1

Specifier's comments:

1 Input data

Anchor type and diameter:	Hex Head ASTM F 1554 GR. 36 5/8	
Item number:	not available	
Effective embedment depth:	h _{ef} = 6.000 in.	
Material:	ASTM F 1554	
Evaluation Service Report:	Hilti Technical Data	
Issued I Valid:	- -	
Proof:	Design Method ACI 318-14 / CIP	
Stand-off installation:		
Profile:		
Base material:	cracked concrete, 4000, f_c ' = 4,000 psi; h = 12.000 in.	
Reinforcement:	tension: condition B, shear: condition B;	
	edge reinforcement: none or < No. 4 bar	

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.cor	n
---------------	---

Company:		Page:	2
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - May 17, 2021	Date:	5/17/2021
Fastening point:			

 	-			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	N = 2,000; V _x = 500; V _y = 0; M _x = 0; M _y = 0; M _z = 0;	no	35
		x y y z		

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com			
Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - May 17, 2021	Date:	5/17/2021
Fastening point:	-		

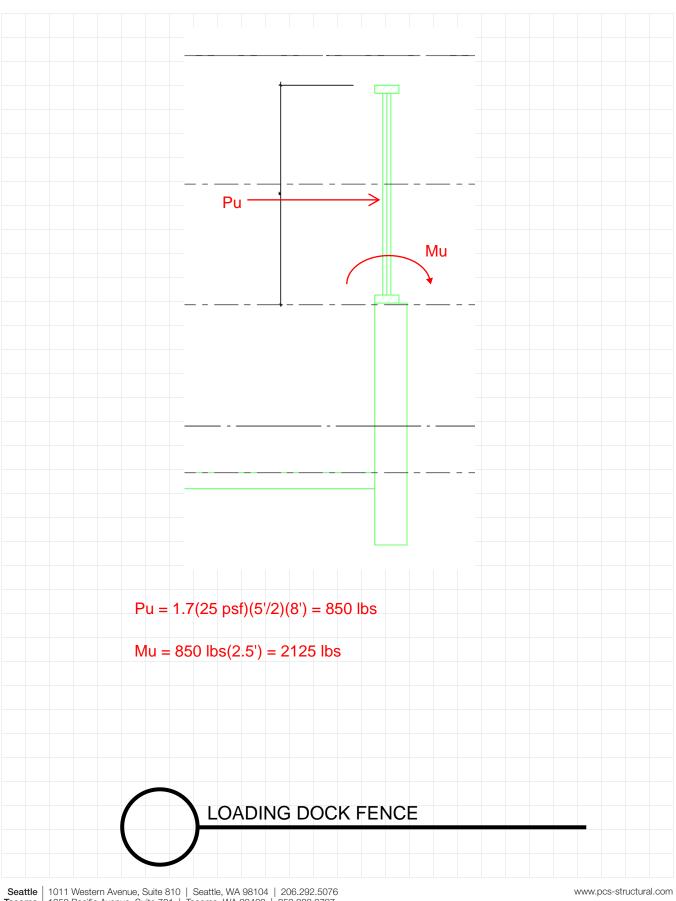
2 Proof I Utilization (Governing Cases)

			Design	values [lb]	Utilization	
Loading	Proof		Load	Capacity	β _N / β _V [%]	Status
Tension	Concrete Breakout	Failure	2,000	5,784	35 / -	OK
Shear	Concrete edge failu	ure in direction x+	500	2,971	- / 17	OK
Loading		β _N	β _v	ζ	Utilization β _{N,V} [%]	Status
Combined tension	and shear loads	0.346	0.168	5/3	23	OK

3 Warnings

• Please consider all details and hints/warnings given in the detailed report!

Fastening meets the design criteria!

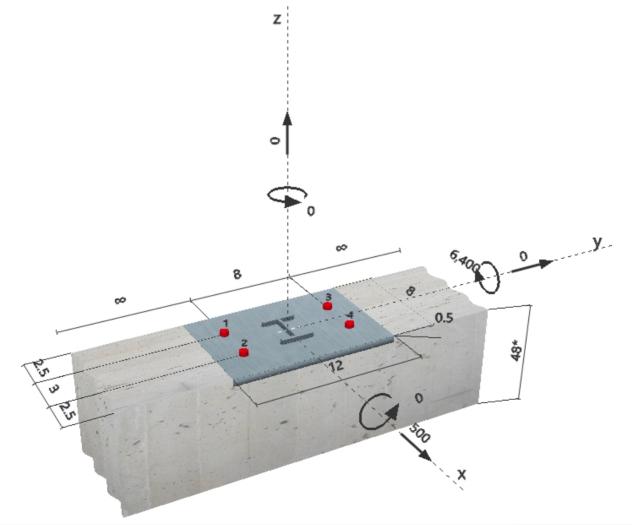

www.hilti.com			
Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - May 17, 2021	Date:	5/17/2021
Fastening point:			

4 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

MISC

	Project: MIMU		_ Job No:
	Subject:	Sheet	Name:
Structural Solutions	Originating Office:	🗌 Tacoma 🔲 Portland	Date: 12/7/22



Profis Anchor 2.7.5 www.hilti.us Company: Page: Specifier: Project: MI Apts - LD Fence Address: Sub-Project I Pos. No.: Phone I Fax: 12/12/2022 T Date: E-Mail: Specifier's comments: Loading Dock Fence 1 Input data Anchor type and diameter: AWS D1.1 GR. B 5/8

Effective embedment depth:	h _{ef} = 4.724 in.
Material:	
Proof:	Design method ACI 318-08 / CIP
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate:	$I_x \times I_y \times t = 8.000$ in. x 12.000 in. x 0.500 in.; (Recommended plate thickness: not calculated
Profile:	S shape (AISC); (L x W x T x FT) = 3.000 in. x 2.330 in. x 0.170 in. x 0.260 in.
Base material:	cracked concrete, 2500, f _c ' = 2500 psi; h = 48.000 in.
Reinforcement:	tension: condition B, shear: condition B;
	edge reinforcement: none or < No. 4 bar
Seismic loads (cat. C, D, E, or F)	no

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Profis Anchor 2.7.5

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

2 Load case/Resulting anchor forces

I

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	604	125	125	0
2	121	125	125	0
3	604	125	125	0
4	121	125	125	0

max. concrete compressive strain:	0.03 [‰]
max. concrete compressive stress:	138 [psi]
resulting tension force in (x/y)=(-1.001/0.000):	1449 [lb]
resulting compression force in $(x/y)=(3.416/0.000)$:	1449 [lb]

3 Tension load

	Load N _{ua} [lb]	Capacity 🖕 N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	604	14966	5	OK
Pullout Strength*	604	12880	5	OK
Concrete Breakout Strength**	1449	5379	27	OK
Concrete Side-Face Blowout, direction **	N/A	N/A	N/A	N/A

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

N _{sa} = A _{se,N} f _{uta}	ACI 318-08 Eq. (D-3)
φ N _{sa} ≥N _{ua}	ACI 318-08 Eq. (D-1)

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.31	65000

Calculations

N_{sa} [lb] 19955

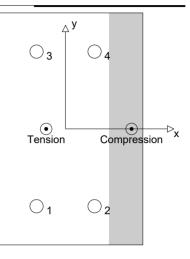
Results

N _{sa} [lb]	∮ _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
19955	0.750	14966	604

3.2 Pullout Strength

$N_{pN} = \psi_{c,p} N_{p}$	ACI 318-08 Eq. (D-14)
$N_p = 8 A_{brg} f_c$	ACI 318-08 Eq. (D-15)
_φ N _{pN} ≥ N _{ua}	ACI 318-08 Eq. (D-1)

Variables


Ψ c,p	A _{brg} [in. ²]	f _c [psi]	
1.000	0.92	2500	
Calculations			
N _p [lb]			
18400			
Results			
N _{pn} [lb]	<pre></pre>	φ N _{pn} [lb]	N _{ua} [lb]
18400	0.700	12880	604

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Page: Project: Sub-Project I Pos. No.: Date:

MI Apts - LD Fence

12/12/2022

2

www.hilti.us

www.initiao			
Company:		Page:	3
Specifier:		Project:	MI Apts - LD Fence
Address:		Sub-Project I Pos. No.:	
Phone I Fax:		Date:	12/12/2022
E-Mail:	-		

3.3 Concrete Breakout Strength

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-08 Eq. (D-5)
$\phi N_{cbg} \ge N_{ua}$	ACI 318-08 Eq. (D-1)
A_{Nc} see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b) $A_{Nc0} = 9 h_{ef}^2$	ACI 318-08 Eq. (D-6)
$\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{\text{ef}}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}} \right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\min}}{c_{ac}}, \frac{1.5h_{\text{ef}}}{c_{ac}}\right) \le 1.0$	ACI 318-08 Eq. (D-13)
$N_{\rm b} = k_{\rm c} \lambda \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψ c,N		
4.724	1.001	0.000	2.500	1.000		
c _{ac} [in.]	k _c	λ	f _c [psi]			
0.000	24	1	2500			
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
177.39	200.88	0.876	1.000	0.806	1.000	12323

Results

N _{cbg} [lb]	φ concrete	φ N _{cbg} [lb]	N _{ua} [lb]
7684	0.700	5379	1449

www.hilti.usProfis Anchor 2.7.5Company:Page:4Specifier:Project:MI Apts - LD FenceAddress:Sub-Project I Pos. No.:Phone I Fax:Phone I Fax:IDate:12/12/2022E-Mail:III

4 Shear load

	Load V _{ua} [lb]	Capacity 🖕 V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	125	12971	1	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	500	12276	5	OK
Concrete edge failure in direction x+**	500	6354	8	OK

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= A _{se,V} f _{uta}	ACI 318-08 Eq. (D-19)
ϕV_{stee}	l ≥ V _{ua}	ACI 318-08 Eq. (D-2)

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
0.31	65000
Calculations	

Vsa	_a [lb]
19	955

Results

V _{sa} [lb]	∲ steel	φ V _{sa} [lb]	V _{ua} [lb]
19955	0.650	12971	125

4.2 Pryout Strength

$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-08 Eq. (D-31)
	ACI 318-08 Eq. (D-2)
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-08 Eq. (D-6)
$\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{\text{ef}}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,\min}}{1.5h_{\text{ef}}} \right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\Psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-08 Eq. (D-13)
$N_{\rm b} = k_{\rm c} \lambda \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Variables

k_cp	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]		
2	4.724	0.000	0.000	2.500		
Ψ c,N	c _{ac} [in.]	k _c	λ	f _c [psi]		
1.000	-	24	1	2500		
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
177.39	200.88	1.000	1.000	0.806	1.000	12323
Results						
V _{cpg} [lb]	∲ _{concrete}	φ V _{cpg} [lb]	V _{ua} [lb]			
17537	0.700	12276	500	-		

www.hilti.us		Profis Anchor
Company:	Page:	5
Specifier:	Project:	MI Apts - LD Fence
Address:	Sub-Project I Pos. No.:	
Phone I Fax:	Date:	12/12/2022
E-Mail:		

4.3 Concrete edge failure in direction x+	4.3 Concrete	edge	failure	in	direction	х+
---	--------------	------	---------	----	-----------	----

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-08 Eq. (D-22)
∳ V _{cbg} ≥ V _{ua} A _{Vc} see ACI 318-08, Part D.6.2.1, Fig. RD.6.2.1(b)	ACI 318-08 Eq. (D-2)
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-08 Eq. (D-23)
$\psi_{\text{ec,V}} = \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) \le 1.0$	ACI 318-08 Eq. (D-26)
$\Psi_{\text{ed},V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-08 Eq. (D-28)
$ \psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0 $	ACI 318-08 Eq. (D-29)
$V_{b} = \left(8\left(\frac{l_{e}}{d_{a}}\right)^{0.2}\sqrt{d_{a}}\right)\lambda \ \sqrt{f_{c}} \ c_{a1}^{1.5}$	ACI 318-08 Eq. (D-25)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	Ψ c,V	h _a [in.]
5.500	-	0.000	1.000	48.000
l _e [in.]	2	d _a [in.]	ť _c [psi]	
	λ			Ψ parallel,V
4.724	1.000	0.625	2500	1.000

Calculations

A _{Vc} [in. ²]	A _{Vc0} [in. ²]	Ψ ec,V	$\psi_{\text{ed,V}}$	Ψ h,V	V _b [lb]
202.13	136.13	1.000	1.000	1.000	6113
Results					
V _{cbg} [lb]	∮ _{concrete}	φ V _{cbg} [lb]	V _{ua} [lb]		
9077	0.700	6354	500		

5 Combined tension and shear loads

β _N	βv	ζ	Utilization β _{N,V} [%]	Status
0.269	0.079	5/3	13	OK

 $\beta_{\mathsf{NV}}=\beta_{\mathsf{N}}^{\zeta}+\beta_{\mathsf{V}}^{\zeta}<=1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This
 means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be
 sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate
 thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption
 is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for
 plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

Fastening meets the design criteria!

Profis Anchor 2.7.5

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

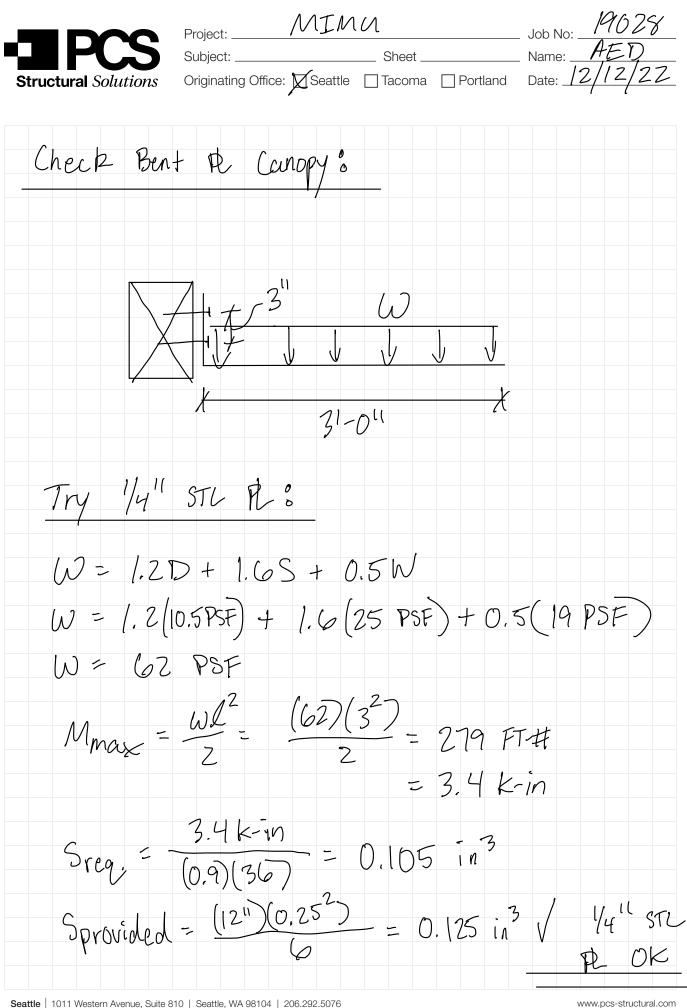
7 Installation data

Anchor plate, steel: -Profile: S shape (AISC); 3.000 x 2.330 x 0.170 x 0.260 in. Hole diameter in the fixture: $d_f = 0.688$ in. Plate thickness (input): 0.500 in. Recommended plate thickness: not calculated Drilling method: -Cleaning: No cleaning of the drilled hole is required

T

Page: Project: Sub-Project I Pos. No.: Date:

6 MI Apts - LD Fence 12/12/2022


Anchor type and diameter: AWS D1.1 GR. B 5/8 Installation torque: -Hole diameter in the base material: - in. Hole depth in the base material: 4.724 in. Minimum thickness of the base material: 5.537 in.

Coordinates Anchor in.

Anchor	х	У	C.,x	C+x	C _{-y}	C+y
1	-1.500	-4.000	2.500	5.500	-	-
2	1.500	-4.000	5.500	2.500	-	-
3	-1.500	4.000	2.500	5.500	-	-
4	1.500	4.000	5.500	2.500	-	-

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746 Tacoma Portland

19028 MIMU Job No: Project: . Name: ____ Sheet ____ Subject: _ Originating Office: X Seattle Date: _ **Structural** Solutions Check 1/2" & Lag Screws $V_{APP} = \frac{186}{2} PLF - CP$ $V_{CAP} = \frac{2}{5} \times 1.6^{5} \times 320 \# = \frac{1024}{4} \# \sqrt{OK}$ $\# \text{ of screws} = \frac{M}{d} = \frac{3.4}{3^{11}} = 1.13 \text{ K}$ $T_{APP} = \frac{M}{d} = \frac{CPV}{3^{11}} = 1.13 \text{ K}$ $T_{CAP} = \frac{378}{10} \# (CPV) = 1.3 \text{ K} \sqrt{OK}$ $T_{CAP} = \frac{378}{10} \# (1.6 \times (2.19^{11}) = 1.3 \text{ K} \sqrt{OK})$ (Thread Length)1/2" p×4" Long Lag Screws OK V 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 Seattle